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The periodically non-stationary random signals (PNRSs), whose carrier harmonics are mo-
dulated by jointly stationary high-frequency random processes are analyzed. A repre-sentation
of the signal in the form of a superposition of high-frequency components is obtained and it is
shown that these components are jointly periodically non-stationary random processes. The
random process is periodically non-stationary of the second order only in the case when some
of the cross-covariance functions of its modulation processes are not equal to zero. The correla-
tions of the PNRP spectral harmonics and the correlations of the modulating processes in series
representation are equivalent. Evaluating the specific features of the auto- and cross-covariances
for modulating processes as well as contribution of each pair to the covariance component
values allows us to detect defects at early stages.
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[IpoananizoBano nepiogunyHo HectanioHapHi Bunaakosi curamu (ITHBC), Hecydi rapmoHiku
SKAX 3MOJYJIbOBaHi B3a€MOCTAIliOHAPHUMHM BHCOKOYACTOTHUMHU BHUIIQJKOBHMH IIPOIECaMHU.
CurHajiM MojaHo y BHIJLIII CYNEprO3HIil BHCOKOYACTOTHUX CKJIAJJOBHX 1 BCTAHOBIICHO, LIO IIi
CKJIQJIOBI € B3a€MOIIEPIOANYHIMH HECTAl[lOHAPHUMH BHIIAIKOBUMHU HpoliecaMu. BumankoBuii
MIpoLeC € NepioUYHO HECTAI[lOHAPHUM APYToro HOPSAKY JIMIIE TOJi, KOJIH JIesKi i3 B3a€MOKO-
penAiitanX QyHKIIN Horo MOAYIAIIMHUX MPOIIECiB HE AOPIBHIOOTH HYI0. OliHka crerudiv-
HUX XapaKTEPHUCTHK aBTO- Ta B3AEMOKOPEIALIHHUX (QYHKIIH IS MOIYTIOIOYMX MPOIECIB i
BHECKY KOXXHOI apH iHAUBITYaIbHUX KOPEJISMil Y KOpeIsIiiiHi KOMIOHEHTH CHUTHAY 3arajioM
Jla€ MOXKJIMBICTD BHSIBUTH JIeDeKTH Ha paHHIX CTaisIX po3BUTKYy. KonmBaHHS, 10 XapakTepusy-
IOThCSl OHOYACHO MOBTOPIOBAHICTIO TA CTOXAaCTUYHICTIO, ONMHUCYIOTh MOJEISIMH y BHUIJISAL T1e-
pioanuHo HecTanioHapHUX BUnaakoBux npoueciB (ITHBII) Ha ocHOBI cTOXacTUYHOT MOIYJIALIT
HecyuMx rapMoHik. I Moaymsiis Moxe OyTH HU3BKO- i BACOKOYAaCTOTHOIO, 8 TAKOX MIHPOKO-
a00 BY3bKOCMYTOBOIO Y KOXKHOMY KOHKPETHOMY BUNaAKy. OCKiJbKH BUCOKOYACTOTHY MOIYJIsSI-
L{10 3YMOBJIIOIOTH JIOKAJIbHI HECIIPABHOCTI B €JI€MEHTaX 00SpTOBHX MAIllMH, TO OCHOBHY YyBary
30CepeKEeHO caMe Ha aHajli3i IbOTo BHUIAAKY. BiOpariitHuii curHa MOKHa OITUCATH K CyTep-
MO3HIIIF0 CTOXAaCTUYHO aMIUTITYAHO- i ()a30BO- MOJYJIOBAHUX HECYYHX TApPMOHIK 3 JEKITbKOMA
yactotamu. Take noganus € xapakrepue ans [THBIL. Ilpu npoMy cMMITOMAaTHYHOIO O3HAKOIO
MOSIBY TIOIIKOJKEHb MEXaHI3My € BJIACHE TEPioIMYHA HECTAI[lOHAPHICTh BiOpaliifHOTO CUrHa-
ny. ToMy HEoOXiJHO AETaNbHO MPOAHATI3yBAaTH KOPEIIIHHY Ta CHEKTPAIbHY CTPYKTYPH CTO-
XaCTHYHUX MOAyIiiliil Hecyuunx rapmoHik [THBII. IIpoanarnizoBaHo By3bKOCMYTOBHIA MOYJIBO-
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BaHMi, 6aratokomno-HeHTHHI [IHBC, monanuii y BUIIIAA1 psAy 3 BUCOKOYACTOTHUMH MOIYJIS-
LiHUMH CKJIQJIOBHMH, 1 TOBEICHO, IO BOHHU € CTAlliOHAPHUMH Ta B3aEMOIEPIOAWYHO HECTa-
[IOHAPHUMH BHUITQJIKOBHMH IIpollecaMH. BcTaHOBIIEHO, IO CyMa IX aBTOKOpEINil BU3HAYaE
KOpeIsNiiiHy (QyHKIIIO CTallioOHapHOI alpoKCHMallil CHTHAITY, a CyMa iX B3a€eMOKOpeJsLiil piB-
Ha 3MIHHUM Y 9Yaci CKJIaJIOBUM KOpeJIil CUTHaTy, KOTpi BIacHe i BU3HAYalOTh HecTallioHap-
HICTB BiOpaniifHOro CUTHaIY.

KirouoBi cnoBa: nepioouuno necmayionapui eunaoxosi npoyecu, Giopayiunull cueHai,
KopenayluHuu anails.

Introduction. Oscillations, which are characterized by their recurrence and sto-
chasticity, as well as interactions between these features are described by oscillation
models in the form of periodically non-stationary random processes (PNRPs) based on
stochastic modulation of their carrier harmonics [1-3]. This modulation may be low- or
high-frequency, and may be wide- or narrow-band, in each domain. The authors in [4]
found that the vibrational properties of both low- and high-frequency modulations can
occur in different cases. Since high-frequency modulation is caused by the appearance
of local faults in the elements of rotating machines, the main attention in the literature
was focused on an analysis of this effect. This analysis was traditionally carried out
using so-called “envelope” or “high-resonance” techniques (also known as “demodulated
resonance analysis”) [5-8] before the cyclostationary approach was developed [7-16].

The envelope analysis was devised as an empirical technique [5, 7, 17]. It should
be applied to a purely random part of the signal, and hence the deterministic compo-
nents must be canceled. Several procedures were developed for this purpose, including
time synchronous (coherent) averaging [1-3, 18], linear prediction [19], self-adaptive
noise cancellation [20], the spectral method [21] and others. Although the best results
are obtained using time-synchronous averages, this approach requires a separate opera-
tion, including individual resampling, for each considered case. To avoid these disad-
vantages, the component or least squares methods can be used to separate the determi-
nistic parts of the signal. These approaches do not require interpolation or resampling,
and can be applied to arbitrary sampling steps which satisfy the anti-aliasing conditions.

Vibration signals could be represented as products of the low-frequency, modulating,
deterministic signals and random forced oscillations. However, a more detailed analysis
of the covariance structure for the vibration of damaged rotating machinery showed that
the results of repetitive mechanical impacts are more complicated [10, 16]. The vibration
signal in many cases can be described as a superposition of stochastically amplitude- and
phase-modulated carrier harmonics with multiple frequencies. Note that this representa-
tion is a characteristic feature of PNRP [1, 22]. Taking this into consideration, we can
analyze in more detail the covariance and spectral structures of stochastical modulations
of PNRP carrier harmonics, since the periodical non-stationarity is the symptomatic
feature for the appearance of damage [4].

In this paper we will analyze the narrow-band modulated, multi-component PNRS,
give its representation in the form of a series of high-frequency components and prove
that they are stationary and jointly periodically non-stationary random processes; we
will show that the sum of their auto-covariances determines the covariance function of
stationary approximation of the signal, and summing up of their cross-covariances
yields the signal covariance terms which change with time.

Model of PRRP as stochastically modulated signal. The PNRP mean function
m; (t)=E&(t), where E is the operator of the mathematical expectation, the covariance

functions b, (t,u):E%(t)%(Hu), e%(t):&(t)—mé (), are periodical functions of time,
i.e. mg (t)=m; (t+P), be (t,u)=b. (t+P,u), where P is period. If m, (t) are absolutely

integrable time functions over interval [0, P], namely

20 ISSN 3041-1823. Information Extraction and Process. 2024. Issue 52 (128)



P P
[|me (Dfdt<oo,  f]be (tu)dt<covueRr,
0 0

then they can be represented in the form of a Fourier series as follows:

me ()=’ mek et =my + 3 (mlf coskagt + my sin kmot) , @
kez keN

be (t,u)=2 Blg‘;’)(u)e"“"Ot :B((,F’)(u)+ > [C‘Ea)(u)coskmouslga) (u)sinkapt } )
kez keN

where o =2—;, mk%(mﬁ—imﬁ), Blg‘:)(u)=%[C£&)(u)—iS£‘:)(u)}Vk;&O, Z isthe set

of integer numbers, N is the set of natural numbers and

m 1T t)e ket gy
=5 [ me(t)e ’
0

P .
Bl(f) =%jbé (t,u)e Mtdt .,
0

The mean function in Eq. (1) describes the deterministic part of the vibrations, which
is usually associated with the macroscopic defects of mechanical systems, such as imba-
lance, eccentricity, misalignment, etc. The stochastic part a(t) contains information

about the non-linearity and non-stationarity of the vibration signal caused by friction
forces, changes in the viscosity of lubricants, surface irregularities, etc. An analysis of the
stochastic part, including its periodical non-stationarity characteristics, i.e. the Fourier

coefficients Blﬁa) (u) in Eq. (2), allows defects to be detected in the early stages after their
initiation [10, 12, 16].
The covariance components B, (t) satisfy the equality:

B (-0)= (we .
The zero™ covariance component is an even function: Bé‘:) (-u)= Bé‘g) (w). Itisalso

a positive definite function [1, 23, 24]. Thus Bé‘:)(u) has all the properties of the

covariance function of stationary random processes. Therefore, this quantity is called a
covariance function of stationary approximation of PNRP [1, 16, 23].
If

j ‘bé (t,u)‘du <o,
then we can introduce the function
1 % i
fE’((D't)ZZ_n_'Lbi (t,u)e™Mdu,

which is called the instantaneous spectral density of PNRP. Taking into account the
Fourier series in Eq. (2), we have

i (0t)= Y 19 (0)eker,

kez
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The spectral density Fourier coefficients are called the cyclic spectrum [3, 9] or
spectral components [16, 23]. They satisfy the equalities:

£ (~0)= £ (0+kwy) ,

£ (0)= 1 (@+kap) .

Here “ ™ signifies complex conjugation. The zeroth spectral component fO(E-‘) (w) isareal
even non-negative function:

(19 (0)=§ (), 7 (0= (), §()>=0.
As the Fourier transform of the covariance function of PNRP stationary appro-
ximation, it determines the PNRP spectral composition.

The non-zero™ spectral components fk(&) (w) determine the correlations of harmo-
nics in the PNRP spectral representation

0

g(t)= [ €“'dz(w), 4)
where
Edz(w)= Y md(w—kep)do,
kez
Ed;((ol)d;((oz)zz fi (031)6((02—031+k(00)d031d(02 , (5)
keZ

and d ;(m)zdz(w)—mkéi(co—kcoo)dco , (o) is the Dirac delta function. It follows

from Eq. (5) that the periodical non-stationarity of random processes stipulates in Eq. (4)
the correlations harmonics shifted by ko .

Proceeding from the PNRP series representation [1, 22, 25],
Et)= 3 & (1) e, 6)
kez

where &, (t) are jointly stationary random processes, we can deduce that the properties of
the mean in Eqg. (1) and covariance function in Eq. (2) are determined by the properties of
modulating processes & (t). The mathematical expectations of &, (t) are equal to the

Fourier coefficients of the mean function m(t):EE, (t)=m, . The cross-covariance

functions Ry (u)=EE, (t)§, (t+u), where &, (t)=& (t)—my, determine the Fourier
coefficients of the PNRP covariance function with the number k=I-r:
%mﬁgwmwww. Y
eZ

It follows from Eq. (7) that the random process in Eq. (6) is the second order
periodically non-stationary only in the case when some of the cross-covariance
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functions of the modulation processes are not equal to zero. The zero™ covariance
component is defined by the auto-covariance functions of & (t):
By (u)= X RY” (u)e
lez
Substituting Eq. (7) into Eq. (3), we obtain the equality:

fk(&) (@):IZZ: fl(—ék),l (o=lay), 8)
where
1 7 —iou
i ()= [ R (u)e ™ du.

It follows from Eqgs. (5) and (8) that the correlations of the PNRP spectral harmonics
and the correlations of the modulating processes in series representation in Eq. (6) are
equivalent.

Covariation and spectral properties of PNRP. Thus, within the framework of the
PNRP theory of the second order, the properties of vibration are described by the mean
function, covariance function, instantaneous spectral density and their Fourier coefficient.
The properties of the vibration deterministic part can be specified by the amplitude

1/2 me "
A {(mﬁ)2 +(m|f)2} and phase ¢y =arctg—- spectra. The spectral composition of
My
the vibration’s stochastic part is defined by the zero™ spectral component fo(‘g) ().

Integrating this quantity we get the time-averaged value of the power of the vibration
stochastic part:

B (0)= [ {9 (0)dw. ©)

The power time changes of the stochastic part are determined by the variance
Fourier coefficients:

B (0)= | %) (w)do. (10)

The quantities in Eq. (10) are the summary characteristics for the correlations of
harmonics shifted by kg . They are complex, so we can describe the power time changes

) L2
b:(t,0) using amplitude  V, {[CP(O)J +[S§é)(0)] } and  phase

s® o
o :arctgk(T() spectra. Note that it is not expedient to calculate these spectra using
C(0)

the transforms in Egs. (9) and (10), since they can be calculated directly on the basis of
experimental data using cyclic (component) statistics [25].

The covariance component with number k can also be considered as the summary
characteristics of the cross-covariances of the modulating processes, the indexes of which
differ by number k. Assuming that the series in Eqg. (6) is finite and the number of
harmonics is equal to L, we have:
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BL (u)= 2 R, (u)eltes, (11)

leS
where S:{—L,...,k+L} for k<0 and S:{k—L,...,L} for k>0 . The cross-covariance

functions RIEF) (u) are determined by the relation:

i s [ es sc
RIEIEJ) (U)ZZ[R§k§| (U)+ Rﬁk@ (u)_l[Rék‘il (u)_Rék{;' (U):|:| ' (12)
where

o

RS (u)=EEE(D)EFS(t+u) | RE, (1)=EEE(t)Ef(t+u),

E5S(1)=55° (1)-mp*, mgs =2 (1).
It follows from Egs. (11) and (12) that the individual modulated harmonics in the
representation in Eq. (1)
gy (t)=Ek (t)coskant +E (t)sinkopt

are periodically non-stationary and jointly periodically non-stationary random processes.
For u=0, we have

B (0)-3, R, (0).

So, the Fourier coefficients of the signal variance are determined by the elements of
the quadratic matrix

R (O):|:RISF) (0):|2L><2L .

Since RLF)(U):F?,(E)(—U), this matrix is Hermitian. Summing up the elements of
the diagonal for k=1, we obtain the zero™ covariance component:

5 (0)- 3 R (05 3 [R(0)+7; (0)]

I=—L
For the covariance components of positive order k >0 ,we have:

1 & c s -[5cs sc
= ZIEL[R&—@L (0)+ R, (O)_I[Ril-k& (O)_R§|-k§| (O)H ‘ (13)
As we can see from these relations, the first covariance component is determined by
the sum of the elements of the first upper diagonal, the second covariance component —
by the sum of the elements of the second upper diagonal, etc. Similarly, the covariance
components with negative k<0 are determined by the respective sums of the elements

for the diagonals of the matrix bottom part.
The matrix, whose elements are modulus

By (0)

R O3 [R5, 0488, @ +[RE, O +RE, O Tz |

is symmetric, therefore the sums of the elements for the respective upper and bottom
diagonals are the same:
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L k+L
Z ‘RI(E;),I (0)‘: Z RI(EIZ,I (O)‘
I=k—L =L

Then, for characterizing the cross-covariances of the modulating processes, we can
choose the quantity

L
sc=2 Y[R3, (0)-

I=k—L
It follows from Eq. (13) that 2|By (0)| <Sy .

Proceeding from the values of the elements for matrix UR&’) (O)H , We can
2Lx2L

evaluate the specific features of the auto- and cross-covariances for modulating processes
& (t) and the contribution of each pair to the covariance component values.

A similar decomposition will also be useful for the analysis of the dependences of
the covariance components on lag. Based on Eqg. (11), we can interpret and parameterize
the empirical dependences, which are obtained by the experimental data processing.

CONCLUSIONS

The properties of the mean and covariance function in the PNRP are determined
by the properties of their modulating processes. The mathematical expectations of
PNRS are equal to the Fourier coefficients of the mean function. The cross-covariance
functions determine the Fourier coefficients of the PNRP covariance function with
different numbers. The random process is the second order periodically non-stationary
only in the case when some of the cross-covariance functions of its modulation
processes are not equal to zero. The correlations of the PNRP spectral harmonics and
the correlations of the modulating processes in series representation are equivalent.

Evaluating the specific features of the auto- and cross-covariances for modulating
processes and the contribution of each pair to the covariance component values allows
us to detect defects at early stages.
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