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NUCLEAR ASYMMETRY ENERGY, NEUTRON SKIN AND ISOVECTOR STIFFNESS

The isovector particle densities and surface tension coefficients for the average binding energy in the approximation
of a sharp edge proton-neutron asymmetric nucleus are used for analytical calculations of its neutron skin and isovector
stiffness coefficients. They are significantly different from the well-known ones for the most Skyrme forces. The
energies and energy-weighted sum rules of the isovector giant dipole resonances obtained within the Fermi-liquid drop

model are in good agreement with the experimental data.
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Introduction

The neutron skin of the exotic nuclei with a large
excess of neutrons against protons is still one of the
remarkable subjects of the nuclear and astronomic
physics [1 - 6]. The simple and accurate solution for
the isovector particle density distributions were
obtained within the nuclear effective surface (ES)
approximation [7 - 11]. It exploits the property of
saturation of the nuclear matter and a narrow
diffuse-edge region in finite heavy nuclei. The ES is
defined as the location of points of the maximum
density gradient. The coordinate system related
locally to the ES is specified by a distance & from

the given point to the surface and tangent coordinate
n at the ES. The variational condition of the nuclear

energy minimum at some fixed integrals of motion
in the local energy-density theory is simplified in the
&,n coordinates. In particular, in the extended

Thomas - Fermi (ETF) approach [12, 13] (with the
Skyrme forces [14]) it can be done for any
deformations by using expansion in a small
parameter a/R ~ A" <1 for heavy enough nuclei
(a is of the order of the diffuse edge thickness of
the nucleus, Ris its mean curvature radius, and A4
the number of nucleons). The accuracy of the ES
approximation in the ETF approach without spin-
orbit (SO) and asymmetry terms was checked [9] by
comparing results of the Hartree - Fock (HF) and
ETF theories [12] for some Skyrme forces. The ES
approach [7 - 9] was extended by accounting for the
SO and asymmetry effects [10]. Solutions for the
isoscalar and isovector particle densities and
energies in the ES approximation of the ETF
approach were applied to analytical calculations of
the neutron skin and isovector stiffness coefficients
in the leading order of the parameter a/R [11].
Our results are compared with the fundamental

researches [1 - 3] in the liquid droplet model (LDM).
In the present work, we used the derived energy
surface constants for calculations of the isovector
giant dipole resonances (IVGDR) within the Fermi
liquid-drop model (FLDM) [15 - 17].

Asymmetry energy and stiffness

We  start with the nuclear energy,

E= Idr E(p,(r),p (r)), in the local density
approach [7 - 14],

Ep..p)==bp +Jp +p.[e(p)—¢€ ]+

+(C,+Dp,)(Vp,) +(C.+Dp,) (Vo) (D

where p,=p, tp, are the isoscalar p, and
isovector p_ particle densities, /[ =(N—-Z)/ A is
the asymmetry parameter, N = jdrpn(r) and

Z= Idrp ,(r) are the neutron and proton numbers

and A=N+Z. As usually, £ (see Eq. (1)) contains
the volume and surface terms (two first and three
last with the gradient-density ones) [7-11],
b, =16 MeV is the separation energy per particle
and J =30MeV is the volume symmetry-energy
constant of the nuclear matter. Eq. (1) can be applied
approximately for the most of realistic Skyrme
forces [14] by neglecting the relatively small
semiclassical 7 corrections of the ETF kinetic
energy and Coulomb terms as shown in [9, 10].
They all can be easily taken into account (without
small exchange Coulomb terms) [9, 10]. C, and D,
are constants defined by the Skyrme force
parameters (D_ is relatively small). The isoscalar

surface energy-density part, independent explicitly
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of the density gradient terms, is determined by the
function £,(p,) which satisfies the saturation
e.(p)=0,
p=3/(4nr)=0.16fm™> is the density of the
infinite nuclear matter,
constant independent of 4. The isovector component
can be simply evaluated as £ =J (I P_p?/ pf) . The

condition: de (p)/dp, =0, where

=R/ Ais a radius

isoscalar SO gradient terms in Eq. (1) are defined
with a  constant: D, =-9mW, /(16k’), where
W, =100—130 MeV - fm® and m is the nucleon mass
(see [12, 14]). From the condition of the minimum
energy £ under the certain constraints, like the fixed
A= fdrp+ (r) and N-Z :Idrp_(r) one arrives

at the Lagrange equations with the isoscalar and
isovector multipliers (chemical potentials). To satisfy
the condition of the particle number conservation with
the required accuracy we account for relatively small

surface corrections (e<a /R ~ A~ at the first order)
to the leading terms in the chemical potentials [9, 10].

Using the analytical solutions of the Lagrange
equations for the isoscalar and isovector particle
densities p, one obtains [9 - 11] the nuclear energy,

E=E,+E,, in the ES approximation in terms of
the volume, E, =-b,A+JI°A, and the surface,

E,=EY +E{’, components where

E® =0,8=b0S/(4mr?),
by =871 C, [ dE(1+Dop, 1C.)(3p./0E) 5 (2)

S is the area of the ES. For the isovector surface
energy constant b.~ one obtains

b =k?, ky=6pC.J /(ra),

1 w(l+ fw) T2
= d 1-w)(1+ .3
J. 1+ﬁ{ o [((1-w)(1+aw)] . (3)
Here, a =,/C,pK / (305} ) = 0.5 fm is the diffuseness

parameter, K =230MeV is the incompressibility
modulus, B=D,p/C, is the dimensionless SO

parameter, w=(1-w)/c,,, ¢, =a\J/(p|C_]),
¢=(pBc,, /2-1)/(1+p). With the quadratic
approximation &(w) = (1—w)’one obtains simple

expressions for these constants b (or kg, see

Egs. (2) and (3)) in terms of the elementary
functions.
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According to the theory [1 - 3], one can define
the isovector stiffness ( with respect to the neutron

skin variable 7 (the dimensionless measure of the
difference between the neutron and proton radii
R, —R)):

or’S
arxr}

b

7=(R,~R)/T,. 4)

Using also Eq. (2) for the isovector surface energy
E{’ one may express Q through the isovector

surface energy constant k, as Q=-b{"/7’=
=—k,I* /7*. Defining the neutron and proton ES
radii. R, as the positions of the maxima of the

neutron and proton density gradients and expanding
in powers of small R, —R near the ES up to the

first order terms one obtains [11]

8ag(w,)

T=—=—""1I,

2
"6Csym

_ w3/2(1+,8w)5/2
g(w)= (1+B)(3w+1+45w)

s{w(1+26w) +2(1+ aW)[ew—c,,,, (1+2EW)]}, (5)

sym

is the value of w of the ES,
ew)+w (1+

where w,_=w(0)
determined by the equation:
+pw. e (w,)=0. Within a good approximation
ew)y=>1-w)> [9, 10],
w, =(/9+85-3)/(4/). In Eq. (5), we used also

the expressions for the isovector density p_ [9, 10].

one simply has

The neutron and proton particle-density variations
conserve the position of the center of mass in the
linear approximation in OR,, and asymmetry

parameter / . Using Egs. (3) - (5) one finally arrives at
O=ky /17 =-vJ" kg,
v=kI* /(@I =9T" I[16g*(w,)], (6)

where J_ and g(w,) are given by Egs. (3) and (5).
Note that the first relationship in Eq. (6) between the
isovector quantities, the stiffness O and the volume
J and surface kg energy constants has the same
analytical form as predicted in [1-3],
Q=-9J%/(4ky), where v=9/4. Its difference
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from Eq. (6) in terms of J and k; is in the constant
v which is however proportional to the function
J’>/g*(w,) in our derivations, instead of 9/4. This
function depends significantly on the SO interaction
B parameter but not much on the surface
asymmetry constant C . The constant v (see

Eq. (6)) is weakly sensitive to the specific Skyrme
interaction because the most sensitive parameter

C_was mainly excluded in v, 7o1/c> o (C and

sym

kg o< C_ (see Egs. (3), (5) and (6)). This constant v
at f=0 (w,=1/3) can be easily evaluated using

Egs. (3), (5) and (6) (v=(108/25x

X[1-8/(7c,,)[1-4/(3c,,)]" up to small terms
2

<l1/c,,, ¢, =2—06 for the Skyrme parameters of

[14]). Another difference is the expression (3) itself
for kg. Thus, the isovector stiffness coefficient O
introduced originally by Myers and Swiatecki [1] is
not a parameter of our theory but it was found
analytically in the explicit closed form Egs. (6), (3)
through the parameters of Skyrme forces.

FLDM and IVGDR

For calculations of the IVGDR we may use the
FLDM based on the linearized Landau - Vlasov
equations for the dynamical part of distribution
functions o, (r,p,?) in the phase space [17],

9 Sfirp+
o 7

+ ext
m

P v.[6fr.p.00+5(c—e.)be, +VE =550, (T)

where m, are the isoscalar (+) and isovector (—)
effective masses, e=p’/2m., e, =(p;)’ /2m. is
the Fermi energy; p; =p,(1FA) is the Fermi
momenta; A=2(1+F,)[/3, F/=3J/e,~1 is the

isotropic isovector Landau constant of the

quasiparticle interaction; Jde, is the quasiparticle
interaction energies; V.., o exp(—iwt) is the periodic
time-dependent external field and 6St, ==0 f, /T

is the collision term in the simplest 7 -relaxation
time approximation. Solutions of these Egs. (7)
related to the dynamic dipole particle-density

variations, 0 p,(r,t)e<Y,, (;) <cos(d) in the
spherical coordinates », €, @ can be found in

terms of a superposition of the plane waves over
angles of the wave vector q as

5f¢ :§(e—eF)><
xj sin0,d6,dp,®. Y, (&)exp [i(qr-or)]
with g=4q/q, ®

w=pPs*q/m, s'=s, s =s\NZ/ A, q=q|

(the factor \VNZ/ A® ensures the conservation of the
center-of-mass position, see [18]). P, are the
amplitudes of the Fermi surface distortions
determined from Eq. (7). The dynamical variations
of the quasiparticle interaction Je,(r,p,?) at the
first order with respect to the equilibrium energy
p’ /2m, are defined through the particle and current
density variations and Landau interaction constants
(the isoscalar (F,) and isovector (F,) isotropic
interaction constants related to the volume
incompressibility modulus K and symmetry energy
constant J as well as the anisotropic interaction
constants corresponding to the effective masses
m, ). The two dispersion relations (26) in [17]
determine the solutions for the two sounds s=s,
(n=1,2) as functions of @7 , the main (n=1)
peak and its satellite (n=2) in the nuclear volume
due to the nuclear asymmetry.

For the finite Fermi liquid-drop with a sharp ES
we may use the macroscopic boundary conditions
for the pressures and those for the velocities [10, 11,
17]. For small isovector vibrations near the spherical
shape the mean normal velocity u. and normal

momentum flux-tensor OI1 g components (moments

of the distribution function o/ , see Eq.(8)) are

reduced to the radial ones, u, and Ol ,
respectively,
ur |r:R: uS °
oIl | _,=0P;, with
OB, =200 pAY,(7)/3. (9)

The right hand sides of the boundary conditions are
the isovector ES velocity ug,=Re.Y,,(7) and
capillary pressure excess OF,. In Eq. (9), dF; is
given through the isovector surface energy constant
b =4xrjo. [Bq. (3)], @\’ is the dynamical
isovector-dipole amplitude of the motion of the
neutron drop surface against the proton one
(R(t)=R[1+ . (t)N4r /5Y,,(7)] keeping also the
volume and the position of the center of mass
conserved).
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The energy constant D =hwA" and energy
weighted sum rules (EWSR, S=

=1’ [dowm y(w)/ ) for the IVGDR can be

found from the response function y(w). Solving the

Landau - Vlasov equations (7) in terms of the zero
sound plane waves (8) with using the dispersion
relations (26) in [17] for s, and macroscopic

boundary conditions (9) on the nuclear ES one obtains

n=1

el @R d e ] a0
Here ¢, ~1-3s} +F, , d, =1—s! +F, for the main
(n=1) IVGDR peak, and more bulky expressions
for s, of the satellite (n=2) peak of a smaller
(e<1) strength (see Eq. (DI11) in [17]).
A(Q)=-pR’ji(qR)/(me?’)  and  A(g)<A
(Eq. (60) in [17]) are the amplitudes for the n=1, 2

modes, j,(z) is the standard spherical Bessel

function and ji'(z) =dj, /dz. The poles of the
response function y(w) Eq. (10) (roots @, of the
equation R (w—il'/2)=0 or g,) determine the
IVGDR energies ha), as their real part (the IVGDR
width I' is determined by their imaginary part). The
residue A, is important for the calculations of the

IVGDR strength (EWSR) by taking the integral of
olm y(w) (see Eq. (10)) at a small width of the
IVGDR T'. Note that the expression like Eq. (10)
for the only one main peak in symmetrical nuclei
(N =Z) with using phenomenological boundary
conditions was obtained earlier in [15]. However, in
our derivations of Eq.(10), kg is related to the

o =b/(4rr})=

=k,I’/(4xr;), through the isovector capillary

surface tension coefficient,

pressure 0P, of Eq. (9) and surface energy E’

(Eq. (2)). Therefore, kg (with the opposite sign)

differs essentially from the isovector stiffness
coefficient O (defined through Eq. (4) in [1 - 3]) by

7° (see Eq. (6)), in contrast to another interpretation

of the corresponding quantity (denoted by B™) in
Egs. (3) and (20) of [15].

Discussion and summary

The isovector surface energy constants £k,
(Eq. (3)), the neutron skin 7= (Eq. (5)) and the
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stiffness coefficients Q (Eq. (6)) in the ES approach
using the simplest quadratic approximation for
&(w)are shown in the Table for several Skyrme
forces [14]. The constants k¢ (see Eq. (3)) are rather

sensitive to the choice of the Skyrme forces. The
modulus of &, for the Lyon Skyrme forces SLy4-7

and SLyb230 [14] is significantly larger than for
other forces. Relatively, the stiffness O is even

more sensitive to constants of the Skyrme forces,
especially for SGII, than the well-known empiric
values QO =14—-35 MeV suggested in [1 - 3]. For T6
[14] one has C =0 and therefore, k;,=0 and
Q= (v is weakly dependent of C_), in contrast
to all other forces shown in the Table. Notice that
the isovector gradient terms which are important for
the consistent derivations within the ES approach
[11] are not also included (C_=0) into the energy
density in [4, 5]. For RATP [14] the stiffness Q is
even negative as C >0 (kg>0). The reason of
significant differences in the O values might be
related to those of the critical isovector Skyrme
parameter C_ in the gradient terms of the energy

density (see Eq. (1)). Different experiments used for
fitting this parameter were found to be almost
insensitive in determining uniquely its value, and

hence, k, (or b\, see Eq. (3)) and Q (see Eq. (6)),
the
b{" surface-energy constant. The isovector surface-

as compared to well-known  isoscalar

energy constant k, (see Eq. (3)) and stiffness O
(see Eq. (6)) depend much on the SO S through the
constants J_ in Eq. (3) and g(w,) of the neutron
skin 7 (see Eq.(5)). In Eq. (6), v is roughly
constant (v =2—4) for all Skyrme forces at =0
but significantly varies as function of # depending
on different Skyrme forces. The values of v are
mostly smaller than 9/4 suggested in [1] (besides of
SGII where we found much larger values).
Swiatecki and his collaborators found [2] the
stiffness Q =14—20MeV from fitting the nuclear
IVGDR energies calculated in the simplest
hydrodynamic model (HDM) to the experimental
data. Then, larger values Q =30-35MeV were
suggested in the last two references in [1]. In spite of
the several misprints in these derivations [2] (see
[11]) the final result for the IVGDR energy constant
D is close to that for the asymptotically large values
of QO (3J47"°/Q < 1). The IVGDR energy constants

D of HDM are roughly in good agreement with the
well-known experimental value D, ~80MeV for

heavy nuclei within a precision better or of the order
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of 10 %, as shown in [11] (see also [15 - 17, 19 - 21]).
More precise 4™ dependence of D with the finite
values of O seems to be beyond the accuracy of these
HDM calculations even accounting more consistently
for the ES motion because of several other reasons
(structure of the IVGDR, curvature, quantum-shell
and Coulomb effects in the low energy region)

towards the realistic calculations based on the Skyrme
HF approach, see larger O =30—80 MeV found in [6,

12]. With larger O (see the Table) the fundamental
parameter of the LDM expansion in [1],
(9J/40)4™"", is really small for 4>40 and

therefore, the results obtained by using this expansion
are justified.

The isovector energy K and stiffness Q coefficients for several Skyrme forces [14];

v is the constant of Eq. (6); 7/ | is the neutron skin calculated by Eq. (5); the intervals of functions D (A)
and D(A)=(D,S,+D,S,)/(S,+S,) are related to A=60—210

Calculated Skyrme forces
quantities SkM* SkM SIIT SGII RATP SkP T6 SLyS SLy7
C MeV - fm’ -4.79 -4.69 -5.59 -0.94 13.9 -20.2 0 -22.8 -13.4
B -0.64 -0.69 -0.57 -0.54 -0.52 -0.37 -0.45 -0.58 -0.65
ks, MeV -0.77 -1.90 -0.52 -0.21 1.42 -1.93 0 -6.96 -6.32
v 0.34 0.46 1.42 17.9 0.45 1.76 4.30 0.59 0.67
0, MeV 398 234 2168 60998 -270 823 oo 87 109
T/l 0.044 0.090 0.40 0.040 0.072 0.035 0 0.0019 0.048
D,, MeV 75 - 82 75-176 49 - 106 76 - 77 87 50-122 | 86-88 64 -91 63-92
Sy, % 93 -98 85-96 57-92 95-99 70 - 90 65-98 100 58 -77 53-88
D, ,MeV 50 - 88 51-82 118 -79 51-81 55-89 75 -80 60 - 59 92 -63 92 -71
S5, % 7-2 5-4 43 -8 5-1 30-10 | 35-2 0 42-29 | 47-12
D, MeV 73 -82 71 -76 79 - 104 74 - 77 77 - 87 70 - 69 86 - 88 76 - 84 77 - 89
The Table shows the IVGDR energies coefficients. Results for the isovector surface energy

D, =hw®,A" (n=1,2) and EWSR S, (normalized
to 100 % for both peaks) obtained within a more
precised FLDM [17]. The IVGDRs even for the
spherical nuclei have a double-resonance structure,
the main peak #n=I1which exhausts mainly the
EWSR for almost all Skyrme forces and the satellite
one n=2 with significantly smaller EWSR
contribution proportional to the asymmetry parameter
I, especially for heavy nuclei. The last row shows
the average D weighted by their EWSR distribution
in rather good agreement with the experimental data
within the same accuracy about 10 %, including
SLyb230 (D=81-91 MeV) and skipped here in
Table 1 for the sake of space. Exclusion can be done
for the Skyrme forces SIII (see the Table) and
SLya230 (D =101-105 MeV) of [14]. Note that the
main characteristics of the IVGDR described by D
are almost insensitive to the isovector surface energy
constant kg .

As conclusions, simple solutions of the isovector
particle density and energies, in the leading ES
approximation were used for analytical calculations

of the neutron skin and isovector stiffness

constant kg and stiffness O are rather sensitive to

the choice of the Skyrme force parameters,
especially those in the isovector gradient terms (C_)

and SO interaction ( £ ). The mean IVGDR energies

and sum rules calculated within the FLDM [17] for
the most of constants k;and Q of the Table are in

good agreement with the experimental data. For
further perspectives, it would be interesting to
compare the found constants with those of [19 - 21]
within  the models
accounting however for the critical comments
mentioned above, especially concerning the
structure of the IVGDR. We are going to analyze the
kg dependence of the IVGDR satellite within the

FLDM in relation to the well-known pygmy GDR
resonances [22, 23] which are expected to be more
sensitive to the values of k. It would be also worth

macroscopic-microscopic

to apply our results to calculations of the energies
and sum rules for the isovector low-lying collective
states within the periodic orbit theory [13, 24 - 26].

Authors thank M. Brack, V. Yu. Denisov, V. M.
Kolomietz, J. Meyer, M. Pearson, P. Ring, A. I.
Sanzhur, and X. Vinas for many useful discussions.
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S1. IL. Baouki, O.T'. Maruep, O. O. Biacenko

SAJEPHA EHEPI'ISI ACUMETPIi, HEUTPOHHA IIIYBA TA I30BEKTOPHA KOPCTKICTb

[30BeKTOpHA T'ycTHHA YaCTUHOK 1 KOe(ILEHT MOBEPXHEBOI'O HATATY JUIS CEpeHbOI eHepril 3B’s3Ky B HAOJNMKEHHI
PI3KOTr0 Kparo MPOTOHHO-HEWTPOHHOIO aCHMETPUYHOIO sifipa BUKOPHCTOBYIOTHCS UISl aHATITHYHUX PO3PAXYHKIB HOTO
HEWTPOHHOI 11yOH Ta KoeillieHTiB 130BEKTOPHOI >KOPCTKOCTI. Pe3ynbrarn 3HaUHO BiAPI3HSIOTHCS BiJ BIIOMUX BEJIUYMH
Jutst Outeinocti cun Ckipma. EHeprii Ta npaBuiia cyM JUIs 130BEKTOPHUX AWIOJIBHUX TMAHTCHKUX PE30HAHCIB, OTPUMAaHUX
y paMKax (epMi-piIiHHOKPAIIeIFHOI MOJIENI SIpa, JOOpe Y3TOKYIOTECS 3 eKCTIEPUMEHTATBHUME JAHUMH.

Kntouosi cnosa: sipepHa eHepris 3B’ 3Ky, TOBEPXHEBA €HEPTis CUMETpIii, TPOTOH-HEHTPOHHA aCUMETPisl, HEHTPOHHA
1ry0a, i30BEKTOpPHA )KOPCTKICTh, JUITONBHI TITAHTCHKI Pe30HAHCH.
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SAJIEPHASI DHEPTUSI ACUMMETPUM, HEUTPOHHAS IIYBA U W30BEKTOPHAS )KECTKOCTbD

W30BekTOpHAsT TIOTHOCTH YacTUI U KOS (HUIMEHT IMOBEPXHOCTHOTO HATSHKEHWS ISl CPEeHEH SHEpTruH CBS3U B
MIPUOIIMDKEHNN PE3KOro Kpasi NMPOTOHHO-HEMTPOHHOTO acCHMMETPHYHOTO sJIpa HMCIIOJB3YIOTCS JUIS aHATUTHYECKHX
pacyeToB ero HEHTPOHHOM NIyOBl M KO PHUIIEHTOB N30BEKTOPHON JKECTKOCTH. Pe3ybTaThl 3HAYUTENFHO OTIIMYAOTCS
OT M3BECTHBIX BEJMYMH Ul OOJBIIMHCTBA cHil CKHpMa. DHEpPTruM M MpaBHia CyMM JUIS M30BEKTOPHBIX IHMITOIBHBIX
THTaHTCKUX PE30HAHCOB, MOJYYEHHBIX B paMKax (hepMHU-KHIKOKANEIbHOH MOJENN S1pa, XOPOLIO COIJIACyIOTCs ¢
9KCIIEPUMEHTAIbHBIMU 1aHHBIMU.

Kniouegvie cnoga: snaepHasi 3HEPIUs CBSI3H, HOBEPXHOCTHASI SHEPTHS CHMMETPHH, IPOTOH-HEUTPOHHASI aCHMMETPHS,
HEeWTpOHHasl 11y0a, N30BEKTOPHAS JKECTKOCTh, AUIOJIbHbIE THTAHTCKHE PE30HAHCHI.
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