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NUCLEAR  ASYMMETRY  ENERGY,  NEUTRON  SKIN  AND  ISOVECTOR  STIFFNESS 

 
The isovector particle densities and surface tension coefficients for the average binding energy in the approximation 

of a sharp edge proton-neutron asymmetric nucleus are used for analytical calculations of its neutron skin and isovector 
stiffness coefficients. They are significantly different from the well-known ones for the most Skyrme forces. The 
energies and energy-weighted sum rules of the isovector giant dipole resonances obtained within the Fermi-liquid drop 
model are in good agreement with the experimental data. 
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Introduction 

 
The neutron skin of the exotic nuclei with a large 

excess of neutrons against protons is still one of the 
remarkable subjects of the nuclear and astronomic 
physics [1 - 6]. The simple and accurate solution for 
the isovector particle density distributions were 
obtained within the nuclear effective surface (ES) 
approximation [7 - 11]. It exploits the property of 
saturation of the nuclear matter and a narrow 
diffuse-edge region in finite heavy nuclei. The ES is 
defined as the location of points of the maximum 
density gradient. The coordinate system related 
locally to the ES is specified by a distance ξ  from 
the given point to the surface and tangent coordinate 
η  at the ES. The variational condition of the nuclear 
energy minimum at some fixed integrals of motion 
in the local energy-density theory is simplified in the 

,ξ η  coordinates. In particular, in the extended 
Thomas - Fermi (ETF) approach [12, 13] (with the 
Skyrme forces [14]) it can be done for any 
deformations by using expansion  in a small 
parameter 1/3/ 1a R A−∼  for heavy enough nuclei 
( a  is of the order of the diffuse edge thickness of 
the nucleus, R is its mean curvature radius, and A  
the number of nucleons). The accuracy of the ES 
approximation in the ETF approach without spin-
orbit (SO) and asymmetry terms was checked [9] by 
comparing results of the Hartree - Fock (HF) and 
ETF theories [12] for some Skyrme forces. The ES 
approach [7 - 9] was extended by accounting for the 
SO and asymmetry effects [10]. Solutions for the 
isoscalar and isovector particle densities and 
energies in the ES approximation of the ETF 
approach were applied to analytical calculations of 
the neutron skin and isovector stiffness coefficients 
in the leading order of the parameter /a R [11]. 
Our results are compared with the fundamental 

researches [1 - 3] in the liquid droplet model (LDM). 
In the present work, we used the derived energy 
surface constants for calculations of the isovector 
giant dipole resonances (IVGDR) within the Fermi 
liquid-drop model (FLDM) [15 - 17]. 

 
Asymmetry energy and stiffness 

 
We start with the nuclear energy, 

( ( ), ( ))E d ρ ρ+ −= ∫ r r rE , in the local density 

approach [7 - 14], 
 

[ ]2( , ) ( )Vb J Iρ ρ ρ ρ ρ ε ρ ε+ − + + + + + −≈ − + + − +E  
 

( )( ) ( )( )2 2ρ ρ ρ ρ+ + + + − − + −+ + + +C D C D∇ ∇ ,    (1) 
 

where n pρ ρ ρ± = ±  are the isoscalar ρ+  and 

isovector ρ−  particle densities, ( ) /I N Z A= −  is 

the asymmetry parameter, ( )nN d ρ= ∫ r r  and 

( )pZ d ρ= ∫ r r
 
are the neutron and proton numbers 

and A N Z= + . As usually, E  (see Eq. (1)) contains 
the volume and surface terms (two first and three 
last with the gradient-density ones) [7 - 11], 

16Vb ≈ MeV is the separation energy per particle 
and 30J ≈ MeV is the volume symmetry-energy 
constant of the nuclear matter. Eq. (1) can be applied 
approximately for the most of realistic Skyrme 
forces [14] by neglecting the relatively small 
semiclassical corrections of the ETF kinetic 
energy and Coulomb terms as shown in [9, 10]. 
They all can be easily taken into account (without 
small exchange Coulomb terms) [9, 10]. ±C  and ±D  
are constants defined by the Skyrme force 
parameters ( −D  is relatively small). The isoscalar 
surface  energy-density part,  independent  explicitly  
 

©  J. P. Blocki, A. G. Magner, A. A. Vlasenko, 2012 



J.P. BLOCKI, A. G. MAGNER, A.A. VLASENKO 

334 

of the density gradient terms, is determined by the 
function ( )ε ρ+ +  which satisfies the saturation 
condition: ( ) 0ε ρ+ = , ( ) / 0d dε ρ ρ+ + = , where 

3
03 / (4 ) 0.16rρ π= ≈ fm 3−  is the density of the 

infinite nuclear matter, 1/3
0 /r R A= is a radius 

constant independent of A . The isovector component 
can be simply evaluated as ( )2 2 2/J Iε ρ ρ− − += − . The 

isoscalar SO gradient terms in Eq. (1) are defined 
with a constant: 2 2

09 / (16 )mW+ = −D , where 

0 100 130W ≈ − MeV ⋅ fm5 and m  is the nucleon mass 
(see [12, 14]). From the condition of the minimum 
energy E  under the certain constraints, like the fixed 

( )A d ρ+= ∫ r r  and ( )N Z d ρ−− = ∫ r r  one arrives 

at the Lagrange equations with the isoscalar and 
isovector multipliers (chemical potentials). To satisfy 
the condition of the particle number conservation with 
the required accuracy we account for relatively small 
surface corrections ( 1/3/a R A−∝ ∼  at the first order) 
to the leading terms in the chemical potentials [9, 10]. 

Using the analytical solutions of the Lagrange 
equations for the isoscalar and isovector particle 
densities ρ±  one obtains [9 - 11] the nuclear energy, 

V SE E E= + , in the ES approximation in terms of 
the volume, 2

V VE b A JI A= − + , and the surface, 
( ) ( )

S S SE E E+ −= + , components where  
 

( ) ( ) 2
0/ (4 )S SE b rσ π± ±

±= =S S , 
 

( )( )2( ) 2
08 1 / /Sb r dπ ξ ρ ρ ξ

∞
±

± ± + ± ±
−∞

≈ + ∂ ∂∫C D C ,   (2) 

 
S  is the area of the ES. For the isovector surface 
energy constant ( )

Sb − one obtains  
 

( ) 2
S Sb k I− = ,   ( )06 /Sk r aρ − −= C J , 

 

( ) ( )( )
1

2

0

11 1 1
1 ( )

w w
dw w cw

w
β

β ε−

+
= − +⎡ ⎤⎣ ⎦+ ∫J . (3) 

 

Here, ( )2/ 30 0.5Va K bρ+= ≈C fm is the diffuseness 

parameter, 230K ≈ MeV is the incompressibility 
modulus, /β ρ+ +=D C  is the dimensionless SO 

parameter, ( )1 / symw w c= − , ( )/ | |symc a J ρ −= C , 

( )/ 2 1 / (1 )symc cβ β= − + . With the quadratic 

approximation 2( ) (1 )w wε ≈ − one obtains simple 
expressions for these constants ( )

Sb ±  (or Sk , see 
Eqs. (2) and (3)) in terms of the elementary 
functions. 

According to the theory [1 - 3], one can define 
the isovector stiffness Q  with respect to the neutron 
skin variable τ  (the dimensionless measure of the 
difference between the neutron and proton radii 

n pR R− ): 
2

( ) 20
2

03 4S
r QE d Q

r
ρ ττ

π
− = − ≈ −∫

S
S , 

 

0( ) /n pR R rτ = − .                          (4) 
 

Using also Eq. (2) for the isovector surface energy 
( )
SE −  one may express Q  through the isovector 

surface energy constant Sk  as ( ) 2/SQ b τ−= − =  
2 2/Sk I τ= − . Defining the neutron and proton ES 

radii ,n pR  as the positions of the maxima of the 
neutron and proton density gradients and expanding 
in powers of small ,n pR R−  near the ES up to the 
first order terms one obtains [11] 

 

( )
2

0

8 r

sym

ag w
I

r c
τ = , 

 

( ) ( )
( )

5/23/2 1
(1 ) 3 1 4

w w
g w

w w
β

β β
+

= ×
+ + +

 

 

}{ 2(1 2 ) 2 (1 )[ (1 2 )] ,symw cw w cw cw c cw× + + + − +  (5) 
 

where (0)rw w=   is the value of w  of the ES, 
determined by the equation: ( ) (1r rw wε + +  

) ( ) 0r rw wβ ε ′+ = . Within a good approximation 
2( ) (1 )w wε = −  [9, 10], one simply has 

( 9 8 3) / (4 )rw β β= + − . In Eq. (5), we used also 
the expressions for the isovector density ρ−  [9, 10]. 
The neutron and proton particle-density variations 
conserve the position of the center of mass in the 
linear approximation in ,n pRδ  and asymmetry 
parameter I . Using Eqs. (3) - (5) one finally arrives at  

 
2 2/ /S SQ k J kτ ν= = − , 

 
2 2 2 2 2 2/ ( ) 9 / 16 ( )S rk I J g wν τ − ⎡ ⎤= = ⎣ ⎦J ,     (6) 

 
where −J  and ( )rg w  are given by Eqs. (3) and (5). 
Note that the first relationship in Eq. (6) between the 
isovector quantities, the stiffness Q  and  the volume 
J  and surface Sk  energy constants has the same 
analytical form as predicted in [1 - 3], 

29 / (4 )SQ J k= − , where 9 / 4ν = . Its difference 
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from Eq. (6) in terms of J  and Sk  is in the constant 
ν  which is however proportional to the function 

2 2/ ( )rg w−J  in our derivations, instead of 9/4. This 
function depends significantly on the SO interaction 
β  parameter but not much on the surface 
asymmetry constant −C . The constant ν  (see 
Eq. (6)) is weakly sensitive to the specific Skyrme 
interaction because the most sensitive parameter 

−C was mainly excluded in ν , 21 / symcτ −∝ ∝ C and 

Sk −∝ C  (see Eqs. (3), (5) and (6)). This constant ν  
at 0β =  ( 1 / 3rw = ) can be easily evaluated using 
Eqs. (3), (5) and (6) ( (108 / 25)ν ≈ ×  

2 1[1 8 / (7 )] [1 4 / (3 )]sym symc c −× − −  up to small terms 
21 / symc∝ , 2 6symc ≈ −  for the Skyrme parameters of 

[14]). Another difference is the expression (3) itself 
for Sk . Thus, the isovector stiffness coefficient Q  
introduced originally by Myers and Swiatecki [1] is 
not a parameter of our theory but it was found 
analytically in the explicit closed form Eqs. (6), (3) 
through the parameters of Skyrme forces. 
 

FLDM and IVGDR 
 

For calculations of the IVGDR we may use the 
FLDM based on the linearized Landau - Vlasov 
equations for the dynamical part of distribution 
functions ( , , )f tδ ± r p  in the phase space [17], 

 

( , , )f t
t
δ ±

∂ +
∂

r p  

 

( )* ( , , ) ,F extf t e e e V St
m

δ δ δ δ±
± ± ± ±

±

⎡ ⎤+ ∇ + − + =⎣ ⎦
p r p  (7) 

 

where *m±  are the isoscalar ( + ) and isovector ( − ) 
effective masses, 2 */ 2e p m±= , 2 *( ) / 2F Fe p m±

±=  is 
the Fermi energy; (1 )F Fp p± = Δ∓  is the Fermi 

momenta; 02(1 ) / 3F I′Δ = + , 0 3 / 1FF J e′ = −  is the 
isotropic isovector Landau constant of the 
quasiparticle interaction; eδ ±  is the quasiparticle 
interaction energies; exp( )extV i tω± ∝ −  is the periodic 
time-dependent external field and /St fδ δ± ±≈ − T  
is the collision term in the simplest T -relaxation 
time approximation. Solutions of these Eqs. (7) 
related to the dynamic dipole particle-density 
variations, ( ) ( )10( , ) cost Y rδ ρ θ± ∝ ∝r  in the 

spherical coordinates r , θ , ϕ  can be found in 
terms of a superposition of the plane waves over 
angles of the wave vector q  as 

( )Ff e eδ δ± = − ×  
 

( ) ( )10sin expd d Y q i tθ θ ϕ ω±× Φ −⎡ ⎤⎣ ⎦∫ q q q qr  
 

with    /q q= q ,                            (8) 
 

( ) */Fp s q mω ± ±
±= , s s+ = , 2/ ,s s NZ A− =  | |q = q  

(the factor 2/NZ A  ensures the conservation of the 
center-of-mass position, see [18]). ±Φ  are the 
amplitudes of the Fermi surface distortions 
determined from Eq. (7). The dynamical variations 
of the quasiparticle interaction ( , , )e tδ ± r p  at the 
first order with respect to the equilibrium energy 

2 */ 2p m±  are defined through the particle and current 
density variations and Landau interaction constants 
(the isoscalar ( 0F ) and isovector ( 0F ′ ) isotropic 
interaction constants related to the volume 
incompressibility modulus K  and symmetry energy 
constant J  as well as the anisotropic interaction 
constants corresponding to the effective masses 

*m± ). The two dispersion relations (26) in [17] 
determine the solutions for the two sounds ns s=  
( 1, 2n = ) as functions of ωT , the main ( 1n = ) 
peak and its satellite ( 2n = ) in the nuclear volume 
due to the nuclear asymmetry. 

For the finite Fermi liquid-drop with a sharp ES 
we may use the macroscopic boundary conditions 
for the pressures and those for the velocities [10, 11, 
17]. For small isovector vibrations near the spherical 
shape the mean normal velocity uξ  and normal 
momentum flux-tensor ξξδΠ  components (moments 
of the distribution function fδ − , see Eq. (8)) are 
reduced to the radial ones, ru  and rrδΠ , 
respectively,  

r r R Su u= =∣ . 
 

rr r R SPδ δ=Π =∣     with    
 

( ) ( ) 1/3
10 ˆ2 ( ) / 3S S SP b A Y rδ α ρ− −= .          (9) 

 
The right hand sides of the boundary conditions are 
the isovector ES velocity ( )

10 ˆ( )S Su R Y rα −=  and 
capillary pressure excess SPδ . In Eq. (9), SPδ  is 
given through the isovector surface energy constant 

( ) 2
04Sb rπ σ−

−=  [Eq. (3)], ( )
Sα −  is the dynamical 

isovector-dipole amplitude of the motion of the 
neutron drop surface against the proton one 
( ( )

10 ˆ( ) [1 ( ) 4 / 5 ( )]SR t R t Y rα π−= +  keeping also the 
volume and the position of the center of mass 
conserved).  
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The energy constant 1/3D Aω=  and energy 
weighted sum rules (EWSR, S =  

2 Im ( ) /dωω χ ω π= − ∫ ) for the IVGDR can be 

found from the response function ( )χ ω . Solving the 
Landau - Vlasov equations (7) in terms of the zero 
sound plane waves (8) with using the dispersion 
relations (26) in [17] for ns  and macroscopic 
boundary conditions (9) on the nuclear ES one obtains 

 
2

1

( )( )
( / 2)

n

n n

q
i

χ ω
ω=

=
− Γ∑ A

R
,     1( ) ( )n j qRω ′= +R  

 

1 11/3

3 ( ) ( )
2

F
n n

S

e qR c j qR d j qR
k A

⎡ ⎤′′+ +
⎣ ⎦

.       (10) 

 

Here 2
1 1 01 3c s F ′≈ − + , 2

1 1 01d s F ′≈ − +  for the main 
( 1)n =  IVGDR peak, and more bulky expressions 
for 2s  of the satellite ( 2n = ) peak of a smaller 
( I∝ ) strength (see Eq. (D11) in [17]). 

3 2
1 1( ) ( ) / ( )q R j qR mρ ω≈ −A  and 2 ( )q ∝ ΔA  

(Eq. (60) in [17]) are the amplitudes for the 1, 2n =  
modes, 1( )j z  is the standard spherical Bessel 

function and 1 1( ) /j z dj dz′ = . The poles of the 
response function ( )χ ω  Eq. (10) (roots nω  of the 
equation ( / 2) 0n iω − Γ =R  or nq ) determine the 
IVGDR energies nω  as their real part (the IVGDR 
width Γ  is determined by their imaginary part). The 
residue nA  is important for the calculations of the 
IVGDR strength (EWSR) by taking the integral of 

Im ( )ω χ ω  (see Eq. (10)) at a small width of the 
IVGDR Γ . Note that the expression like Eq. (10) 
for the only one main peak in symmetrical nuclei 
( N Z= ) with using phenomenological boundary 
conditions was obtained earlier in [15]. However, in 
our derivations of Eq. (10), Sk  is related to the 
surface tension coefficient, ( ) 2

0/ (4 )Sb rσ π−
− = =  

2 2
0/ (4 )Sk I rπ= , through the isovector capillary 

pressure SPδ  of Eq. (9) and surface energy ( )
SE −  

(Eq. (2)). Therefore, Sk  (with the opposite sign) 
differs essentially from the isovector stiffness 
coefficient Q  (defined through Eq. (4) in [1 - 3]) by 

2τ  (see Eq. (6)), in contrast to another interpretation 
of the corresponding quantity (denoted by B− ) in 
Eqs. (3) and (20) of [15]. 
 

Discussion and summary 
 

The isovector surface energy constants Sk  
(Eq. (3)), the neutron skin τ  (Eq. (5)) and the 

stiffness coefficients Q  (Eq. (6)) in the ES approach 
using the simplest quadratic approximation for 

( )wε are shown in the Table for several Skyrme 
forces [14]. The constants Sk  (see Eq. (3)) are rather 
sensitive to the choice of the Skyrme forces. The 
modulus of Sk  for the Lyon Skyrme forces SLy4-7 
and SLyb230 [14] is significantly larger than for 
other forces. Relatively, the stiffness Q  is even 
more sensitive to constants of the Skyrme forces, 
especially for SGII, than the well-known empiric 
values 14 35Q ≈ −  MeV suggested in [1 - 3]. For T6 
[14] one has 0− =C  and therefore, 0Sk =  and 
Q = ∞  (ν  is weakly dependent of −C ), in contrast 
to all other forces shown in the Table. Notice that 
the isovector gradient terms which are important for 
the consistent derivations within the ES approach 
[11] are not also included ( 0− =C ) into the energy 
density in [4, 5]. For RATP [14] the stiffness Q  is 
even negative as 0− >C  ( 0Sk > ). The reason of 
significant differences in the Q  values might be 
related to those of the critical isovector Skyrme 
parameter −C  in the gradient terms of the energy 
density (see Eq. (1)). Different experiments used for 
fitting this parameter were found to be almost 
insensitive in determining uniquely its value, and 
hence, Sk  (or ( )

Sb − , see Eq. (3)) and Q  (see Eq. (6)) , 
as compared to the well-known isoscalar 

( )
Sb + surface-energy constant. The isovector surface-

energy constant Sk  (see Eq. (3)) and stiffness Q  
(see Eq. (6)) depend much on the SO β  through the 
constants −J  in Eq. (3) and ( )rg w of the neutron 
skin τ  (see Eq. (5)). In Eq. (6), ν  is roughly 
constant ( 2 4ν ≈ − ) for all Skyrme forces at 0β =  
but significantly varies as function of β  depending 
on different Skyrme forces. The values of ν  are 
mostly smaller than 9/4 suggested in [1] (besides of 
SGII where we found much larger values). 
Swiatecki and his collaborators found [2] the 
stiffness 14 20Q ≈ − MeV from fitting the nuclear 
IVGDR energies calculated in the simplest 
hydrodynamic model (HDM) to the experimental 
data. Then, larger values 30 35Q ≈ − MeV were 
suggested in the last two references in [1]. In spite of 
the several misprints in these derivations [2] (see 
[11]) the final result for the IVGDR energy constant 
D  is close to that for the asymptotically large values 
of Q  ( 1/33 / 1JA Q− ). The IVGDR energy constants 
D  of HDM are roughly in good agreement with the 
well-known experimental value exp 80D ≈ MeV for 
heavy nuclei within a precision better or of the order 
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of 10 %, as shown in [11] (see also [15 - 17, 19 - 21]). 
More precise 1/3A−  dependence of D  with the finite 
values of Q  seems to be beyond the accuracy of these 
HDM calculations even accounting more consistently 
for the ES motion because of several other reasons  
(structure of the IVGDR, curvature, quantum-shell 
and Coulomb effects in the low energy region) 

towards the realistic calculations based on the Skyrme 
HF approach, see larger 30 80Q ≈ − MeV found in [6, 
12]. With larger Q  (see the Table) the fundamental 
parameter of the LDM expansion in [1], 

1/3(9 / 4 )J Q A− , is really small for 40A  and 
therefore, the results obtained by using this expansion 
are justified. 

 
The isovector energy Sk  and stiffness Q  coefficients for several Skyrme forces [14]; 

ν  is the constant of Eq. (6); / Iτ  is the neutron skin calculated by Eq. (5); the intervals of functions ( )nD A  
and 1 1 2 2 1 2( ) ( ) / ( )D A D S D S S S= + +  are related to 60 210A ≈ −  

 

Calculated 
quantities 

Skyrme forces 
SkM* SkM SIII SGII RATP SkP T6 SLy5 SLy7 

−C MeV · fm5 -4.79 -4.69 -5.59 -0.94 13.9 -20.2 0 -22.8 -13.4 
β  -0.64 -0.69 -0.57 -0.54 -0.52 -0.37 -0.45 -0.58 -0.65 

Sk , MeV -0.77 -1.90 -0.52 -0.21 1.42 -1.93 0 -6.96 -6.32 
ν  0.34 0.46 1.42 17.9 0.45 1.76 4.30 0.59 0.67 

Q , MeV 398 234 2168 60998 -270 823 ∞  87 109 
/ Iτ  0.044 0.090 0.40 0.040 0.072 0.035 0 0.0019 0.048 

1D , MeV 75 - 82 75 - 76 49 - 106 76 - 77 87 50 - 122 86 - 88 64 - 91 63 - 92 
1S , % 93 - 98 85 - 96 57 - 92 95 - 99 70 - 90 65 - 98 100 58 - 77 53 - 88 

2D , MeV 50 - 88 51 - 82 118 - 79 51 - 81 55 - 89 75 - 80 60 - 59 92 - 63 92 - 71 

2S , % 7 - 2 5 - 4 43 - 8 5 - 1 30 - 10 35 - 2 0 42 - 29 47 - 12 
D , MeV 73 - 82 71 - 76 79 - 104 74 - 77 77 - 87 70 - 69 86 - 88 76 - 84 77 - 89 
 

The Table shows the IVGDR energies 
1/3

n nD Aω=  ( 1, 2n = ) and EWSR nS  (normalized 
to 100 % for both peaks) obtained within a more 
precised FLDM [17]. The IVGDRs even for the 
spherical nuclei have a double-resonance structure, 
the main peak 1n = which exhausts mainly the 
EWSR for almost all Skyrme forces and the satellite 
one 2n =  with significantly smaller EWSR 
contribution proportional to the asymmetry parameter 
I , especially for heavy nuclei. The last row shows 
the average D  weighted by their EWSR distribution 
in rather good agreement with the experimental data 
within the same accuracy about 10 %, including 
SLyb230 ( 81 91D = −  MeV) and skipped here in 
Table 1 for the sake of space. Exclusion can be done 
for the Skyrme forces SIII (see the Table) and 
SLya230 ( 101 105D = −  MeV) of [14]. Note that the 
main characteristics of the IVGDR described by D  
are almost insensitive to the isovector surface energy 
constant Sk . 

As conclusions, simple solutions of the isovector 
particle density and energies, in the leading ES 
approximation were used for analytical calculations 
of the neutron skin and isovector stiffness 

coefficients. Results for the isovector surface energy 
constant Sk  and stiffness Q  are rather sensitive to 
the choice of the Skyrme force parameters, 
especially those in the isovector gradient terms ( −C ) 
and SO interaction ( β ). The mean IVGDR energies 
and sum rules calculated within the FLDM [17] for 
the most of constants Sk and Q  of the Table are in 
good agreement with the experimental data. For 
further perspectives, it would be interesting to 
compare the found constants with those of [19 - 21] 
within the macroscopic-microscopic models 
accounting however for the critical comments 
mentioned above, especially concerning the 
structure of the IVGDR. We are going to analyze the 

Sk  dependence of the IVGDR satellite within the 
FLDM in relation to the well-known pygmy GDR 
resonances [22, 23] which are expected to be more 
sensitive to the values of Sk . It would be also worth 
to apply our results to calculations of the energies 
and sum rules for the isovector low-lying collective 
states within the periodic orbit theory [13, 24 - 26]. 
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ЯДЕРНА  ЕНЕРГІЯ  АСИМЕТРІЇ,  НЕЙТРОННА  ШУБА  ТА  ІЗОВЕКТОРНА  ЖОРСТКІСТЬ 

 
Ізовекторна густина частинок і коефіцієнт поверхневого натягу для середньої енергії зв’язку в наближенні 

різкого краю протонно-нейтронного асиметричного ядра використовуються для аналітичних розрахунків його 
нейтронної шуби та коефіцієнтів ізовекторної жорсткості. Результати значно відрізняються від відомих величин 
для більшості сил Скірма. Енергії та правила сум для ізовекторних дипольних гігантських резонансів, отриманих 
у рамках фермі-рідиннокрапельної моделі ядра, добре узгоджуються з експериментальними даними.  

Ключові слова: ядерна енергія зв’язку, поверхнева енергія симетрії, протон-нейтронна асиметрія, нейтронна 
шуба, ізовекторна жорсткість, дипольні гігантські резонанси. 
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ЯДЕРНАЯ  ЭНЕРГИЯ  АСИММЕТРИИ,  НЕЙТРОННАЯ  ШУБА  И  ИЗОВЕКТОРНАЯ  ЖЕСТКОСТЬ 
 

Изовекторная плотность частиц и коэффициент поверхностного натяжения для средней энергии связи в 
приближении резкого края протонно-нейтронного асимметричного ядра используются для аналитических 
расчетов его нейтронной шубы и коэффициентов изовекторной жесткости. Результаты значительно отличаются 
от известных величин для большинства сил Скирма. Энергии и правила сумм для изовекторных дипольных 
гигантских резонансов, полученных в рамках ферми-жидкокапельной модели ядра, хорошо согласуются с 
экспериментальными данными.  

Ключевые слова: ядерная энергия связи, поверхностная энергия симметрии, протон-нейтронная асимметрия, 
нейтронная шуба, изовекторная жесткость, дипольные гигантские резонансы. 
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