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MÖSSBAUER  FORWARD  SCATTERING  SPECTRA  OF  FERROMAGNETS 

IN  RADIO-FREQUENCY  MAGNETIC  FIELD  
 

The transmission of Mössbauer radiation through a thick ferromagnetic crystal, subjected to the radio-frequency (rf) 
magnetic field, is studied. A quantum-mechanical dynamical scattering theory is developed, taking into account both 
the periodical reversals of the magnetic field at the nuclei and their coherent vibrations. The Mössbauer forward 
scattering (FS) spectra of the weak ferromagnet FeBO3 exposed to the rf field are measured. It is discovered that the 
coherent gamma wave in the crystal, interacting with Mössbauer nuclei, absorbs or emits only couples of the rf photons. 
As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the 
absorption spectra. Our experimental data and calculations well agree if we assume that the hyperfine field at the nuclei 
in FeBO3 periodically reverses and there are no coherent vibrations.  
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Introduction 
 

Ferromagnetic nanoparticles and thin films are 
widely used as the memory elements in electronics. 
Therefore intensive investigations are carried out of 
their magnetization dynamics [1]. The Mössbauer 
spectroscopy gives unique possibility to get 
information about such a dynamics in local vicinity 
of the Mössbauer isotope 57Fe. 

Starting from the pioneer work of Pfeiffer [2], it 
has been shown in numerous experimental papers 
(see reviews [3 - 6]), that the Mössbauer absorption 
spectra of soft ferromagnets, exposed to the rf field 
of circular frequency Ω , consist of equidistant lines 
spaced by Ω . When at the nucleus apart from the 
magnetic field ( )th  there exists yet the electric field 
gradient, such lines split into doublets. At low 
frequencies the absorption spectrum transforms to 
standard Zeeman sextet. In the case of high 
frequencies the spectrum collapses to single line 
(doublet). 

The external rf field 0( ) = cost tΩH H  generates 
in soft ferromagnet both the magnetostrictive 
vibrations and the periodic reversals of its 
magnetization ( )tM . The magnetic field at the 
nucleus ( )th , which is antiparallel to ( )tM , follows 
these reversals jumping between the values 0+h  and 

0−h  with the period = 2 /T π Ω . For such 
ferromagnets the magnetization completely repeats 
oscillations of ( )tH  and no static magnetization 

stM  is present. In this situation the magnetostrictive 
vibrations have the frequency 2Ω  [3, 7]. 

The rf collapse at high frequencies is certainly 
due to fast reversals of the field ( )th , when the 
nucleus only "sees" the averaged field ( ) = 0t〈 〉h . 
The appearance of sidebands separated by the 
interval Ω  is caused by magnetostrictive vibrations 
and magnetization reversals. The last mechanism has 
been studied in theoretical papers [7 - 14]. It was 
shown that the stepwise reversals of the field 
provide satellites, whose intensity quickly falls down 
with growing their order. At the same time, satellites 
owing to ultrasound vibrations are characterized by 
more slow attenuation (see, e.g., [15, 16]. Good 
fitting of Pfeiffer's rf absorption spectra was 
achieved by taking into account both the reversals 
and magnetostrictive vibrations [11]. 

If a constant magnetic field is superimposed along 
the rf external field, the reversals become asymmetric 
in time and the nucleus already "sees" along with the 
alternating field nonzero averaged field ( )t〈 〉h , which 
ensures quasi-Zeeman splitting of the nuclear quasi-
levels. Respectively, every absorption line splits into 
quasi-Zeeman sextet [11, 13]. 

The role of stochastic jumps of the magnetization 
vector, driven by the applied rf field, has been 
studied in [17, 18]. 

Interesting transient effects arise in the case, when 
the period T  of the rf oscillations much exceeds the 
nuclear lifetime. Then the field reversal causes 
oscillations of the time-dependent absorption cross 
section of γ -quanta [10] and strong flash of the 
radiation, transmitted through a ferromagnet [19, 20]. 

Nevertheless, a shortcoming of these calculations 
is that they were performed in the kinematical 
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approximation, i.e., they neglected rescattering of 
photons in the target. This is valid for extremely thin 
absorbers with 0 0 1nσ = , where 0n  is the number of 
Mössbauer isotopes per unit square and 0σ  is the 
resonant absorbtion cross section of γ -quanta. In 
most experiments this constraint is violated. 
Therefore the dynamical scattering theory has been 
developed of Mössbauer rays by the ferromagnet in 
the regime of periodical reversals of the magnetic 
field [21]. Another dynamical approach and 
preliminary straight-forward scattering rf spectra of 
γ -photons by the iron borate crystal FeBO3 were 
presented in [22]. 

In this paper we first build detailed theory for the 
Raman scattering to forward direction of Mössbauer 
radiation by a soft ferromagnetic crystal, when 
simultaneously there exist periodical reversals of the 
magnetic field ( )th  and coherent vibrations. This is 
quantum-mechanical theory, based on exact equa-
tions of multiple scattering [23], which does not 
involve any classical Maxwellian equations. Further 
we discuss our experimental results obtained on the 
iron borate in the rf field. 

Mention also the papers [24 - 26], where the 
selective excitation double-resonance (SEDM) 
spectra of superparamagnetic particles have been 
observed. It was shown that stochastic reversals of 
their magnetization lead to appearance of satellites 
in such scattering spectra, which provide pure 
information about the frequency of magnetization 
reversals, not masked by the Brownian motion of the 
magnetization vectors and by the interparticle 
interaction. The corresponding scattering theory was 
built in [29]. 

All this allows us to think that forward scattering 
(FS) experiments will lead to better understanding of 
the processes in ferromagnets exposed to rf fields. 
Specifically, they reveal the transparency alteration 
[24] as well as the interference of the scattering 
amplitudes [25]. 

It is worth to note that Mössbauer FS 
experiments were already conducted with vibrating 
stainless steel [15, 16]. 

 
Scattering amplitudes 

 
We direct the axis z  perpendicularly to the 

crystal slab along the incident beam of γ -quanta 
with frequency = /Eω  and wave vector 

= {0,0, }kk . The crystal occupies the space 
0 z D≤ ≤ , where D  is the crystal thickness. The 
direction of the axis x  is chosen along the magnetic 
field amplitude 0h , which is believed to be parallel 
to the crystal surface. 

Let the magnetic field at the Mössbauer nucleus 
( )th  periodically changes its direction to the 

opposite one, i.e. 
 

0( ) = ( ),t f th h                               (1) 
 

where T  is the period of the rf field and = 2 / TπΩ  
is the circular frequency and the factor 

( ) = ( )f t f t T+  is determined by 
 

1, 0 < < / 2
( ) =

1, / 2 < < ,
t T

f t
T t T

−⎧
⎨+⎩

               (2) 

 
Moreover, there are coherent magnetostrictive 

vibrations, which ensure periodic displacements of 
the nuclei from the equilibrium position 

 

0( ) = cos(2 ),t t φΩ +R A                      (3) 
 

where 0φ  is an initial phase of vibrations. We 
assume that these vibrations have the same 
amplitude A  within the cross section of the incident 
beam of γ -quanta. 

The nuclei in the periodic magnetic field (1) are 
described by the Floquet wave functions 

 
/( ) = ( ) ,iW t

M Mt t e κ
κ κ

ψ −Ψ                     (4) 
 

where the periodic functions ( ) = ( )M Mt t T
κ κ

ψ ψ +  

are given by 
 

0 0
( ) =| exp ( ) / ,

t

M t I M i M h f t dtκ κ κ κκ
ψ γ⎡ ⎤′ ′〉 −⎢ ⎥⎣ ⎦∫     (5) 

 
the index κ  labels the ground g  or excited e  
nuclear states, κγ  represents the gyromagnetic ratio 
in the κ th state of the nucleus, | =| I Mκ κκ 〉 〉  are the 
stationary wave functions of the nucleus with spin 
Iκ  and its projection Mκ  on the quantization axis 
x , while the corresponding nuclear energies are 

= 0gW  and 0=eW E′ . 
The nuclei 57Fe, absorbing incident photons, 

perform transition from the ground state | g〉  to the 
excited one | e〉 . If k  is perpendicular to 0h , 
γ -quanta with linear polarization xe  generate 
transitions = 1g e gM M M→ ±  and those with 
polarization ye  induce transitions with =e gM M . 
Thus, the unit vectors xe  and ye  are eigenpolariza-
tions of photons, which are not mixed during 
scattering by nuclei. 

Since the nuclei are exposed to an alternating 
magnetic field with circular frequency Ω , the 
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γ -quanta undergo the Raman scattering, leading to 
appearance of γ -quanta with shifted frequencies 

=n nω ω − Ω , where n  is an integer. In the case of 
straight-forward scattering far from the Bragg 
condition their wave vectors are = {0,0, }n nkk  with 

= /n nk cω . 
In order to find the scattering amplitude of 

γ -quanta by the nucleus we should calculate the 
matrix elements ( )egM t  of the operator 

1 ( )ˆ ( )N ikR tc j eα
− k  on the Floquet wave functions (4). 

Here  
ˆ ( ) = ( )N i

Nj e d eα α ∫ krk r j r                      (6) 

 
represents the Fourier transform of the current 
density operator of the nucleus ( )Nj r , multiplied by 
the polarization vector αe . Employing well-known 
expansion 
 

cos

=

= ( ) ,ix t l il t
l

l

e i J x e
∞

Ω Ω

−∞
∑                         (7) 

 
where ( )lJ x  is the Bessel function of the order l , 
we get the coefficients ( )ega n  of the Fourier series 

for the periodic function ( )egM t  (see also [11]): 
 

0

=

( ) = ( ) ( 2 ),ill
eg l eg

l

a n i e J b n lφ
∞

−∞

⋅ −∑ k A            (8) 

 
where 

2 2

2
( ) = exp sin

2 2 ( )
eg eg eg

eg
eg

x n x n x
b n i

x n
π π

π
+ +⎡ ⎤⎛ ⎞ ⎛ ⎞

−⎢ ⎥⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎣ ⎦  
(9) 

with parameters 
 

0= , = ( ) / .
2
eg

eg eg g g e e

T
x M M h

α
α γ γ−        (10) 

 
General expression for the coherent Raman 

scattering amplitude of γ -quanta by j th nucleus in 
the rf field has been derived in [10]. For particular 
case of forward scattering by an unpolarized target it 
can be written as  

 

( ) ( )

= 1/2

1( , ; , ) = ( , ; , ) ,
2

n n N n n N
coh n n j gg n n j

M g

f fα α α α
′ ′− −

′ ′
±
∑k e k e k e k e

(11) 
where ( )n n

ggf ′−
′  is the Raman scattering amplitude of 

γ -quanta by j th nucleus, which passes from the 
initial state | g〉  to the final | g′〉 : 

 
2 * 2 *

2( )

= 0

ˆ ˆ| ( ) | | ( ) | ( ) ( )
( , ; , ) =

/ 2

N NjW eg egn n N a
gg n n j j

M me

c e j g e j g a m n a m n
f p e

E E m i
α α

α α

−∞
−′−

′ ′
−∞

′ ′〈 〉 〈 〉 − −
−

′− − Ω + Γ∑∑
k k

k e k e       (12) 

 
and jp  is the fraction of the Mössbauer isotope in 

the j th site, 2Wae−  is the Debye - Waller factor for 
the absorber, Γ = Γγ + Γe is the width of the excited 
level of the scattering nucleus, which consists of the 
partial radiative width Γγ and the conversion electron 
one Γe. The absorption of γ -quanta in crystals is 
mainly determined by Γe, being much larger than Γγ  

The amplitude ( )nf  describes scattering of 
γ -quantum, when it emits ( > 0n ) or absorbs 
( < 0)n  n  modulation quanta Ω . Once k  and 0h  
are perpendicular, the reflection 

, ,e g e gM M M M→ − −  does not change the factor 
2ˆ| | ( ) | |Ne j gα〈 〉k  and the product 

* ( ) ( )eg ega n m a n m′ − −  attributes the sign ( 1)n n′−− , so 
that 

 
( ) ( )

,= ( 1) .n n n
gg g gf f− −−                          (13) 

 

Hence the coherent scattering amplitude ( ) = 0n
cohf  for 

odd n  due to interference of the terms ( )
1/2,1/2

nf  and 
( )
1/2, 1/2
nf− − . 
The Raman coherent scattering amplitude of 

γ -rays by an elementary cell is a sum of the nuclear 
and Rayleigh straight-forward scattering amplitudes. 
The first is 

 

( ) ( )( , ; , ) = ( , ; , ) ,n n N n n N
n n coh n n j

j

F fα α α α
′ ′− −

′ ′∑k e k e k e k e

(14) 
where summation is carried out over all sites j  
within the elementary cell, containing Mössbauer 
isotope. The Rayleigh scattering amplitude by 
electrons 
 

( ) ( , ; , ) = ( , ; , ) ,n n R R
n n n n n nF Fα α α α δ′−

′ ′k e k e k e k e   (15) 
 

where RF  stands for standard Rayleigh scattering 
amplitude to zero angle in the absence of external 
periodic fields (see, e.g., [33]): 
 

0= ( / 4 ) ,R
j pe

j

F r Z i k π σ− +∑                 (16) 
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jZ  is the number of electrons of j th atom, 
2 2

0 = /r e mc  denotes the classical radius of the 
electron, peσ  is the photoelectric cross section. 

 
Transmission of radiation through a crystal 

 
Let the crystal be composed by N  infinite layers 

of elementary cells parallel to the crystal surface. 
Their thickness equals d , so that the crystal 
thickness is =D Nd . Such layers are numerated by 
the index = 0,1, 2, ..., 1m N − , where = 0m  
specifies the face layer with the coordinate 0z ≈  
and = 1m N −  the back layer with z D≈ . 

The incident photon may be described by the 
vector potential (0) (0)( , ) = ikz i tz t e ω

α α
−A A , where the 

vector amplitude is (0) 1/2= (2 / )c k eα απA  [32]. 
Introducing the retarded time * = /t t z c− , we 
rewrite it as 

*(0) * (0)( ) = i tt e ω
α α

−A A . Let us denote the 
off-Bragg transmitting coherent wave by 

* (0) *( ) = ( )t tα α αψA A . In addition, the waves incident 
on the m th layer and scattered by it are denoted 
respectively by ( ) * (0) ( ) *( ) = ( )m mt tα α αψA A  and 

( ) * (0) ( ) *( ) = ( )m m
sc sct tα α αψA A . 

Scattering of photons by a crystal is determined 
by the system of multiple scattering equations [23]. 
For the elastic diffraction of Mössbauer photons they 
were represented in [33, 34]. And for the case 
considered these equations may be rewritten in the 
form 

 
1** ( ) *

=0

( ) = ( ) ,
N

i t m
sc

m

t e tω
α αψ ψ

−
− +∑                 (17) 

and 
*( ) * ( ) *( ) = ( ) ,m i t m

sc
m m

t e tω
α αψ ψ ′−

′≠

+ ∑                (18) 

 
Once we deal with the coherent scattering to zero 

angle, in (18) only the forward scattered waves with 
= 0,1, ... 1m m′ −  are significant. 
Let us expand the incident wave ( ) *( )m tαψ  in the 

functions 
*

*( ) = i tn
n t e ωχ − : 

 

( ) * ( ) *

=

( ) = ( ) ( ).m m
n

n

t b n tα αψ χ
∞

−∞
∑                  (19) 

 
Following [31], it can be shown that the 
corresponding scattered wave is given by 
 

( ) * ( ) *

,

( ) = ( ) ( ),m m
sc n n n

n n

t i F b n tα αψ χ′ ′
′

∑             (20) 

 
where the dimensionless forward scattering 

amplitude of γ  quanta by the m th layer is 
 

= ,N R
n n n n n nF F F′ ′ ′+  

 
( ) ( )

( )

0

2 ( ; )=
( / )

n n N R
N R n n

n n
FF

k v d
α απ ′−

′
′

k e k e         (21) 

 
and 0v  is the volume of elementary cell. 

The matrix n nF ′ , depending on the polarization of 
incident photons α , can be considered formally as a 
matrix of the operator Fα , acting in the space 
spanned on the basis vectors nχ . It allows us to 
represent the wave scattered by the m th layer as  

 
( ) * ( ) *( ) = ( ).m m

sct iF tα α αψ ψ                  (22) 
 

Then the equations of multiple scattering (18) are 
transformed to 

 
1

( ) * ( ) *
0

=0

( ) = ( ),
m

m m

m

t iF tψ χ ψ
−

′

′

+ ∑            (23) 

 
or in more brief form to 
 

( ) ( 1)= (1 ) .m miFα α αψ ψ −+                    (24) 
 

Its solution is as follows: 
 

( ) *
0( ) = (1 ) .m mt iFα αψ χ+                   (25) 

 
Since the scattering amplitudes | | 1n nF ′ = , then 
 

( ) *
0( ) .imFm t e αψ χ≈                        (26) 

 
The eigenvalues dμαδ  of the operator Fα  are 

determined by equation 
 

= ( ) ,F dα μ μα μχ δ χ′ ′                      (27) 
 

where eigenfunctions are given by the expansion 
 

= n n
n

uμ μχ χ′ ∑                             (28) 

 
with the transformation matrix nu μ . 

Using Eqs. (26) - (28), we are led to  
 

( ) (0) ( )

= =

( , ) = ,
i md ik z i tm n n

n
n

z t C e e
δ ωμα μα

α α
μ

∞ ∞
−

−∞ −∞
∑ ∑A A     (29) 

 
where the amplitudes are 

 
( ) 1

0= .n nC u uμ
μ μ

−                        (30) 
 

From here it follows the boundary condition  
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( )
0

=

= ,n nC μ

μ

δ
∞

−∞
∑                                (31) 

 
which implies that at the surface = 0z  there are only 
incident photons with frequency ω . 

Due to inequality | | 1N dμδ << , the m th incident 

wave ( ) ( , )m tαA r  practically coincides with the 
complete wave in the vicinity of the m th layer. 
Therefore inside the crystal, 0 z D≤ ≤ , one has 

 

(0) ( )

= =

( , ) = ,
iK z i tn

n
n

z t C e e ωμα μα
α α

μ

∞ ∞
−

−∞ −∞
∑ ∑A A         (32) 

 
where the wave vectors of photons in the medium 
are Kμα={0,0, Kμα} with 
 

= .K kμα μαδ+                             (33) 
 

Here the dependence of the wave vector k  on n  
is neglected since ΩD/c << 1. 

The photons transmitted through the crystal 
( >z D ) are described by 

 
*

(0)

=

( , ) = ( ) i tn
tr n

n

z t B e ω
α α α ω

∞
−

−∞
∑A A             (34) 

 
with the amplitudes 
 

( )( , ) ,

=

( ) = ( ) .
i D

n nB C e
δ ωμ α μ α

α
μ

ω ω
∞

−∞
∑              (35) 

 
For determination of Dμαδ  it is convenient to 

introduce the dimensionless parameters 
 

0= 2( ) / , = 2 / ,x E E x′− Γ Δ Ω Γ           (36) 
 

Besides, we introduce a thickness parameter of the 
absorber = 4 /bβ Γ , where 

 

20
0= .

4
Wab e nσ −Γ                      (37) 

 
From Eq. (27) it follows that 
 

= ,R Nδ δ δ+                           (38) 
 

where 
 

= / ,R RF dδ                            (39) 
 

while the product N Dδ  is defined by the algebraic 
equations 
 

( ) ( ) ( )

=

= ( )N
n n n n

n

A u D uα α α
αδ

∞

′ ′
−∞
∑                 (40) 

Here the scattering amplitude N
n nF ′  is transformed to 

the matrix 
 

( )
( )

=

( )= ,n n
n n

m

mA
x m x i

α
α β∞

′
′

−∞

−
− Δ +∑                   (41) 

 
which contains the parameters 
 

( ) *
3/2, 1/2 3/2, 1/2( ) = {3[ ( ) ( )

6
x

n n m a m n a m nββ ′ − − − −′− − +  

 
*
3/2,1/2 3/2,1/2( ) ( )]a m n a m n′+ − − +  

 
*
1/2, 1/2 1/2, 1/2[ ( ) ( )a m n a m n− −′+ − − +  

 
*

1/2,1/2 1/2,1/2( ) ( )]}a m n a m n− −′+ − −        (42) 
and  

 

( ) *
1/2, 1/2 1/2, 1/2( ) = { ( ) ( )

4
y

n n m a m n a m nββ ′ − − − −′− − +  

 
*
1/2,1/2 1/2,1/2( ) ( )}.a m n a m n′+ − −             (43) 

 
Thus, our task is reduced to numerical calculation of 
the eigenvalues Dδ  and eigenvectors { }nu  of the 
matrix ( )

n nA α
′ . 

At high frequencies of the rf field ( )Ω→∞  
 

( ) ( ) ,
2n n mn mnmα ββ δ δ′ ′→                     (44) 

 

since in this limiting case 
 

0( )eg na n δ→                             (45) 
 

(see also [4]). As a consequence, the matrix ( )
n nA α
′  

takes the diagonal form 
 

( ) / 2 ,n n n nA
x i

α β δ′ ′→ −
+

                      (46) 
 

which means that no Raman scattering of photons 
occurs in the crystal and the forward scattering 
spectrum collapses to single line or doublet. 

 
Spectra 

 
The γ -quantum, emitted by a source without 

recoil, is described by the wave packet 
 

(0)( , ) = ( ) ,ikz i t
in sz t g e dω

α α ω ω
∞ −

−∞∫A A         (47) 
 

where its Fourier transform is 
 

0

0 0

( ) ,
( / ) / 2

i t

s
s

eg
E E v c E i

ω

ω ∞
− − + Γ

            (48) 



A.Ya. DZYUBLIK,  E.K. SADYKOV,  G.I. PETROV  ET  AL. 

78 

while 0t  is the moment of formation of the excited 
nuclear state, 0E  and sΓ  are the energy and width of 
the excited level of the emitting nucleus, v  is the 
velocity of the source with respect to the absorber. 

The corresponding phononless energy distribu-
tion of the incident radiation is described by the 
Lorentzian function  

 
2 ( )

(0)
2 2

0 0

( ) = .
2 ( ( / ) ) ( / 2)

W ks
s

s
s

ew E
E E v c Eπ

−Γ
− − + Γ

   (49) 

 
According to (34), (35) the electromagnetic wave 

packet, scattered by the crystal to zero angle, will be 
 

** (0) ( )( ) = ( ) ,i t
sc sct d g eα ω

α ω ω
∞ ′−

−∞
′ ′∫A A           (50) 

where 
( )

=

( ) = ( ) ( ).sc s n
n

g g n B nα
αω ω ω

∞

−∞

′ ′ ′+ Ω + Ω∑      (51) 

 
When the incident beam is unpolarized the energy 
distribution of γ -quanta behind the target is given by 
 

( ) 2

= ,

1( ) = | ( ) | ,
2sc sc

x y

w E g α

α

ω′ ′〈 〉∑               (52) 

 
where the brackets <>  denote averaging over the 
initial random moments 0t . The final result for the 
energy distribution of transmitted radiation reads 
 

2(0)

= = ,

1( ) = ( ) ( ) .
2sc s n

n x y

w E w n B nα
α

ω ω
∞

−∞

′ ′ ′+ Ω + Ω∑ ∑  

(53) 
Such a distribution is measured with the aid of 

the analyzing crystal with single resonant absorbtion 
line, which can be approximated by the Lorentz 
curve 

2 2
0 0

1( ) = ,
2 ( ( / ) ) ( / 2)

an
an

an

w E
E E v c Eπ

Γ′
′ ′− − + Γ

  

(54) 
where =E ω′ ′  denotes the energy of photons 
incident on the analyzer, v′  is the velocity of the 
analyzer relative to the target, anΓ  is the width of 
the line. Then the experimentally measured double 
resonance spectrum is described by the following 
integral: 

( ) = ( ) ( ).sc an trW v dE w E w E
∞

−∞
′ ′ ′ ′∫                (55) 

 

Such spectrum is measured with a fixed source. 
As to the absorption spectrum, depending on the 

source velocity v , it is given by the expression 
 

( ) = ( ).a scW v dE w E
∞

−∞
′ ′∫                      (56) 

Experiments 
 

Our experimental set-up, shown in Fig. 1, 
consisted of the source (S) of Mössbauer rays, 
absorbing sample (A), analyzer (An) of the forward 
scattered radiation and detector (D) behind the 
analyzer. During measurements of forward 
scattering spectra the source (57Co(Cr)) was at rest 
with respect to the sample FeBO 3 . The width of the 
source line was = 0.13sΓ mm/s. 

 

 

Fig. 1. Scheme of the experimental set-up for measuring 
forward scattering spectra, where S is the source of 
Mössbauer rays, A is the absorbing crystal FeBO3 placed 
in  the rf magnetic field, An is the analyzer of transmitted 
radiation, D is the detector. 

 
As a target we took a FeBO3 single crystal 

enriched with 57Fe up to 95 %. FeBO 3  is a weak 
ferromagnet (canted antiferromagnet) with the Neel 
temperature = 348NT  K. It was cut along the easy-
magnetization plane (111), in which the 
magnetization vectors of two almost 
antiferromagnetic sublattices are lying. The easy 
plane has very low anisotropy field 1aH ∞  Oe, while 
that along the hard axis is 46.25 10⋅  Oe [35]. This 
iron borate platelet had transverse dimensions 4 mm 
and `thickness = 45D μ m. It was placed inside the 
helical contour, which produced the rf magnetic 
field, oscillating in the plane (111) of the target 
perpendicularly to incident γ  rays. High-frequency 
generator, operating at the frequencies from 10 to 30 
MHz, generated the power up to 120 W and the 
amplitude of the rf magnetic field 0H  achieving 
values up to 20 Oe. The sample temperature 

= 340 0.1T ±  K was kept  within 0.1±  K by means 
of a thermostat.  

Since 0 aH H≈ , the crystal magnetization M , 
driven by the external rf field, periodically reverses 
in the easy plane. It is achieved by simultaneous 
reversals of the magnetization vectors of 
antiferromagnetic sublattices between opposite 
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directions. Such reversals are facilitated when the 
temperature T  is near NT , as in our experiment with 
T  approaching NT . At = 340T  K, even in the 
absence of rf field, the chaotic rotations and 
reversals of the magnetization M  lead to narrowing 
and poor resolution of the sextet, whereas at NT T≥  
the crystal becomes paramagnetic and the spectrum 
collapses into unresolved quadrupole doublet [36]. 

Between the absorber and detector it was placed 
the analyzer - another absorbing crystal, moving 
with constant acceleration and alternating velocity 
v′ . It has been prepared from potassium 
hexacyanoferrate (II) trihydrate 
K 4 [Fe(CN) 6 ]3H 2 O. 

 

 
Velocity, mm/s 

 

Fig. 2. Mössbauer forward scattering spectra of FeBO3 in 
the rf field vs velocity of the analyzer. Dots are experi-
mental data, solid line represent the calculations. 

 
Mössbauer forward scattering spectra of FeBO3 

in the rf field vs velocity of the analyzer. Dots are 
experimental data, solid line represent the 
calculations, known also as potassium ferrocyanide 

(PFC) or yellow potassium prussiate, YPP). This 
compound was enriched in 57Fe to 95 %. The 
absorption spectrum of the analyzer was fitted by a 
single Lorentzian line, having the width 

= 0.37anΓ mm/s. The Doppler modulation of the 
analyzer was achieved by means of a standard MS 
1101 E Mössbauer spectrometer with constant 
acceleration mode. The detector with thin NaJ(Tl) 
scintillator was used. 

The measured rf forward scattering spectra for 
FeBO3 consist of the central line ( = 0)n  and even 
sidebands,( = 2, 4, ...n ± ± ) separated from each 
other by the double driving rf frequency = 2πνΩ  
(Fig. 2). The satellite intensities fall down with 
increasing their order n  much faster than in the case 
of ultrasound modulation [16]. Our FS spectra are 
asymmetric (the right-hand satellites have larger 
amplitude than left-hand ones) in analogy with FS 
spectra in the ultrasound experiment [16]). The 
asymmetry arises because the incident radiation is 
shifted with respect to the center of the Zeeman 
sextet due to the isomer shift 0 0= E Eδ ′ − , in our 
case = 0.35δ  mm/s. 

In addition we have measured the absorption 
spectrum at frequency = 19ν  MHz, which is dis-
placed in Fig. 3. In contrast to the FS spectra it 
contains lines of all orders = 0, 1, 2, ...n ± ±  

 

 
Velocity, mm/s 

 

Fig. 3. Mössbauer absorption spectra of FeBO3 in the rf 
field vs velocity of the source. Dots are experimental data, 
solid line represent the calculations. 

 
Discussion 

 
The Raman scattering of γ -rays by nuclei in rf 

field with the circular frequency Ω  leads to splitting 
of their frequencies ω  into =n nω ω − Ω , where n  
is an integer. We considered their penetration 
through a crystal far from the Bragg condition, when 
the coherent waves ( , )z tμA  arise with different 

wave vectors μK  and amplitudes nCμ  but the same 
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frequency nω . Their coupling is determined by the 
eigenvalue equation (27), which is reduced to the 
infinite system of algebraic equations (40) with the 
matrix (41). The system can be truncated at some 
| |n  because the amplitudes nCμ  rapidly decrease 
with growing | |n . More general system of equations 
to determine gamma-waves in the crystal subject to 
any alternating field has been derived in [31]. They 
describe the case when inelastic (Raman) diffraction 
of waves is realized in the crystal. It was shown in 
the same paper that during inelastic diffraction there 
arise the same effects (suppression of inelastic 
channels, pendellösung effect, etc.)   as for elastic 
diffraction. In particular case when no Bragg 
condition for gamma-waves is fulfilled in the 
crystal, these general equations reduce to the 
equations derived above. It is worth to note also that 
in this paper we gave another and somewhat more 
strict derivation of the dynamical equations govering 
the amplitudes and wave vectors of all the waves.  
They take into account rescattering of waves inside 
the crystal, i.e., the fact that the wave incident on the 
mth crystal plane ( ) *( )m tαA  is formed by the sum of 

the wave incident on the crystal 
*(0) i te ω

α
−A and  waves 

scattered by all other crystal planes. For very thin 
films in the kinematic approximation  rescattering of 
waves can be ignored, then all the incident waves 

( ) *( )m tαA  are replaced by 
*(0) i te ω

α
−A . Every 

component with definite frequency ωn of gamma-
wave inside the crystal is a coherent sum of the 
waves with different amplitudes Cμα and wave 
vectors Kμα. Their interference defines attenuation in 
the crystal of the beam with frequency ωn. Both  
radiative and conversion electron channels as well as 
the Rayleigh electronic scattering contribute to this 
attenuation. 

The periodic reversals of the magnetic field and 
magnetostrictive vibrations are taken into account in 
our equations. We assumed that the field reversals 
occur instantly and simultaneously in the whole 
crystal volume. Good agreement of our model of 
instant reversals with the experiment says that the 
duration of the magnetization rotation in FeBO3 is 
much less than the rf period T , i.e. << 50  ns. Note 
that the estimations of [37] predict this switching 
time from 10 ns to 40 ns. Following [7] we believe 
that the frequency of vibrations is 2Ω . Therefore 
γ -quantum, interacting with such vibrating nucleus, 
can exchange its frequency ω  by nΩ  with even n .  

Once the nucleus is exposed to the rf magnetic 
field, its ground and excited levels split into infinite 

series of quasi-energetic levels, which are spaced by 
the interval Ω . Emission or absorption of 
γ -quanta by such a nucleus is accompanied by 
nuclear transition between quasi-energetic levels of 
the ground set and excited set. As a result, the 
nucleus absorbs and emits γ -quanta with energy 
shifted by any number of rf quanta Ω . In other 
words, γ -quantum emits or absorbs rf photons. 
Note that in the vacuum such a process of emission 
or absorbtion of one photon by another is  practically 
inhibited. 

Respectively, the absorption spectrum, presented 
in Fig. 3, contains equidistant sidebands of all orders 

= 1, 2, ...n ± ±  Nevertheless, it is not the case for the 
coherent rf forward scattering in standard geometry 
with perpendicular ( )tH  and beam of γ -rays. Then 
the coherent wave exchanges with the rf field only 
by couples of the rf photons, and the forward 
scattering spectrum (see Fig. 2) contains only even 
sidebands ( = 2, 4, ...)n ± ± . It is ensured by 
interference of the terms ( )

1/21/2
nf  and ( )

1/2, 1/2
nf− −  in the 

coherent scattering amplitude (see also [21, 22]), 
which is destructive for odd numbers n. 

Good fitting of our data for FeBO 3  in the rf 
magnetic field is obtained, assuming that = 0kA  
and taking into consideration only periodic 
magnetization reversals. Thus, we can conclude that 
no significant magnetostrictive vibrations are excited 
in iron borate perpendicularly to the external rf field 

( )tH  and sidebands in rf Mössbauer spectra of 
FeBO 3  are caused mainly by periodic reversals of 
the magnetic field at the nuclei. So the 
magnetostrictive standing wave, which is excited in 
the transversal direction to the beam of γ -photons, 
is not scattered effectively by defects in FeBO3 to 
give rise to vibrations along this beam. Therefore the 
magnetostrictive mechanism for the sideband 
formation in FeBO3, proposed in [36], seems to be 
insufficient. Note that the magnetostrictive 
vibrations are excited with double rf frequency. If 
only these vibrations were responsible for 
appearance of sidebands, then the sidebands in the 
absorption spectra would be separated by the 
interval 2Ω , while our spectra as well as those of 
[36] clearly demonstrate that the absorption lines are 
spaced by Ω . 
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О. Я. Дзюблик,  Е. К. Садиков,  Г. І. Петров,  В. В. Арінін,  Ф. Г. Вагізов,  В. Ю. Співак 

 
СПЕКТР  МЕСCБАУЕРІВСЬКОГО  РОЗСІЯННЯ  ВПЕРЕД  ФЕРОМАГНЕТИКАМИ 

В  РАДІОЧАСТОТНОМУ  МАГНІТНОМУ  ПОЛІ  
 
Вивчається проходження месcбауерівського випромінювання крізь товстий феромагнітний кристал, що 

перебуває в радіочастотному магнітному полі. Розвинуто квантовомеханічну динамічну теорію розсіяння, яка 
бере до уваги періодичні реверсії магнітного поля на ядрах та когерентні коливання ядер. Поміряно 
мессбауерівський спектр розсіяння вперед м’якого феромагнетика FeBO3, що знаходиться в радіочастотному 
магнітному полі. Виявлено, що когерентна гамма-хвиля в кристалі випромінює чи поглинає тільки пари 
радіочастотних фотонів, унаслідок чого спектр розсіяння вперед складається із рівновіддалених ліній, 
розділених на подвійну частоту, у протилежність до спектра поглинання. Наші експериментальні дані та 
числові розрахунки добре узгоджуються, якщо припустити, що надтонке поле на ядрах FeBO3 періодично 
реверсує без будь-яких когерентних коливань. 

Ключові слова: мессбауерівська спектроскопія, спектри розсіяння вперед, борат заліза, радіочастотне магні-
тне поле. 
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СПЕКТР  МЕССБАУЭРОВСКОГО  РАССЕЯНИЯ  ВПЕРЕД  ФЕРРОМАГНЕТИКАМИ 

В  РАДИОЧАСТОТНОМ  МАГНИТНОМ  ПОЛЕ  
 
Изучается прохождение мессбауэровского излучения сквозь толстый ферромагнитный кристалл, 

находящийся в радиочастотном магнитном поле. Развита квантовомеханическая динамическая теория 
рассеяния, принимающая во внимание периодические реверсии магнитного поля на ядрах и когерентные 
коллебания ядер. Измерен мессбауеровский спектр рассеяния вперед мягкого ферромагнетика FeBO3, 
находящегося в радиочастотном магнитном поле. Обнаружено, что когерентная гамма-волна в кристале 
излучает или поглощает только пары радиочастотных фотонов, вследствие чего спектр рассеяния вперед 
состоит из равноудаленных линий, разделенных на двойную частоту, в противоположность спектру 
поглощения. Наши экспериментальные данные и численные расчеты хорошо согласуются, если допустить, что 
сверхтонкое поле на ядрах FeBO3 периодически реверсирует без каких-либо когерентных коллебаний. 

Ключевые слова: мессбауэровская спектроскопия, спектры рассеяния вперед, борат железа, радиочастотное 
магнитное поле. 
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