УДК 539.171 / 539.172

А. Т. Рудчик¹, В. Ю. Каніщев¹, А. А. Рудчик¹, О. А. Понкратенко¹, Є. І. Кощий², С. Клічевскі³, К. Русек^{4, 5}, В. А. Плюйко⁶, С. Ю. Межевич¹, Вал. М. Пірнак¹, А. П. Ільїн¹, В. В. Улещенко¹, Р. Сюдак³, Я. Хоіньскі³, Б. Чех³, А. Щурек³

= ЯДЕРНА ФІЗИКА=

¹ Інститут ядерних досліджень НАН України, Київ ² Харківський національний університет ім. В. Н. Каразіна, Харків ³ Інститут ядерної фізики ім. Г. Нєводнічаньского, Краків, Польща ⁴ Національний інститут ядерних досліджень, Варшава, Польща ⁵ Лабораторія важких іонів Варшавського університету, Варшава, Польща ⁶ Київський національний університет імені Тараса Шевченка, Київ

ПРУЖНЕ Й НЕПРУЖНЕ РОЗСІЯННЯ ІОНІВ ¹²С ЯДРАМИ ⁷Li ПРИ ЕНЕРГІЇ 115 МеВ

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння ядер 7 Li + 12 C при енергії $E_{\pi a 6}$ (12 C) = 115 MeB у комплексному експерименті з одночасним вимірюванням перерізів реакцій передач з виходом ядер із Z = 3 - 7. Експериментальні дані проаналізовано за оптичною моделлю та методом зв'язаних каналів реакцій. Пружне й непружне розсіяння, процеси реорієнтації спіну 7 Li в основних та збуджених станах, а також найбільш важливі реакції передач включались у схему зв'язку каналів. Визначено параметри оптичного потенціалу взаємодії ядер 7 Li + 12 C в основних та збуджених станах, а також параметри деформації ядер 7 Li i 12 C. Оцінено внески реакцій одно- та двоступінчастих передач у диференціальні перерізи пружного й непружного розсіяння ядер 7 Li + 12 C.

Ключові слова: розсіяння важких іонів, оптична модель, метод зв'язаних каналів реакцій, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

Вступ

Одним з актуальних напрямків фізики важких іонів є дослідження властивостей нестабільних ядер за допомогою реакцій передач з використанням даних комплексних експериментів з одночасним вимірюванням розсіяних іонів та вихідних стабільних і нестабільних ядер. При цьому експериментальні дані пружного й непружного розсіяння іонів необхідні для визначення параметрів взаємодії ядер у вхідних каналах реакцій.

У даній роботі представлено результати першого етапу комплексного дослідження ядерних процесів ⁷Li(¹²C, X) при енергії $E_{\text{лаб.}}(^{12}\text{C}) =$ = 115 MeB з виходом ядер із Z = 3 - 7. На цьому етапі досліджено пружне й непружне розсіяння ⁷Li + ¹²C даного комплексного експерименту.

Варто відзначити, що в літературі відомі експериментальні дані пружного розсіяння ядер ${}^{12}C({}^{7}Li, {}^{7}Li){}^{12}C$ у широкому діапазоні енергій $E_{na6}({}^{7}Li) = 4,5 - 350$ МеВ, що може бути предметом окремого дослідження енергетичної залежності розсіяння цих ядер та параметрів потенціалів їхньої взаємодії.

Методика експерименту

Диференціальні перерізи ядерних процесів ⁷Li(${}^{12}C, X$) з виходом ядер із Z = 3 - 7 при енергії $E_{\text{лаб.}}({}^{12}C) = 115$ МеВ вимірювались на Варшав-

ському циклотроні U-200Р. В експерименті використовувалась самопідтримна мішень літію природного ізотопного складу (⁷Li – 92,5 %, ⁶Li – 7,5 %) товщиною ~ 900 мкг/см². Розкид енергії пучка іонів на мішені не перевищував 0,5 %.

Продукти реакцій реєструвались трьома ΔE -E-спектрометрами з кремнієвими E-детекторами товщиною ~ 1 мм. У двох спектрометрах ΔE -детекторами служила іонізаційна камера з аргоном як робочим газом, при проходжені якого продукти реакцій втрачали таку ж енергію, як у кремнієвому ΔE -детекторі товщиною ~ 15 мкм. У третьому детекторі використовувався кремнієвий ΔE -детектор товщиною 67 мкм.

В експерименті застосовувались електроніка стандарту САМАС та програмна система SMAN [1] для накопичення та отримання $\Delta E(E)$ -спектрів на базі персонального комп'ютера. Детальний опис експериментальної установки міститься в роботі [2].

Типові двовимірні $\Delta E(E)$ -спектри продуктів ядерних процесів ⁷Li(¹²C, X) від ΔE -E-спектрометрів з кремнієвим ΔE -детектором та з іонізаційною камерою показано на рис. 1. Видно, що експериментальна методика з двома кремнієвими детекторами забезпечувала ідентифікацію продуктів реакцій як за зарядами, так і за масами, а спектрометри з іонізаційною камерою – тільки за зарядами.

© А. Т. Рудчик, В. Ю. Каніщев, А. А. Рудчик, О. А. Понкратенко, С. І. Кощий, С. Клічевскі, К. Русек, В. А. Плюйко, С. Ю. Межевич, Вал. М. Пірнак, А. П. Ільїн, В. В. Улещенко, Р. Сюдак, Я. Хоіньскі, Б. Чех, А. Щурек, 2013

Рис. 1. Типові $\Delta E(E)$ -спектри продуктів реакцій ⁷Li(¹²C, X) при енергії $E_{\text{лаб.}}(^{12}\text{C}) = 115 \text{ MeB}$, зареєстровані ΔE -спектрометрами a) з кремнієвим ΔE -детектором та δ) з іонізаційною камерою.

Типові енергетичні спектри ¹²С і ⁷Li, отримані проектуванням відповідних локусів двовимірного $\Delta E(E)$ -спектра на *E*-вісь, показано на рис. 2 і 3: *a*) експериментальні спектри з неперервним фо-

ном від багаточастинкових реакцій та інших процесів, δ) спектри після вилучення фону. Неперервні фони експериментальних спектрів наближувались параметризованими функціями

$$N(E) = \sum_{i} N_{0i} \left[1 + \exp\left(-\frac{E - E_{1i} + E_{2i}/2}{H_{1i}}\right) \right]^{-1} \left\{ 1 - \left[1 + \exp\left(-\frac{E - E_{1i} - E_{2i}/2}{H_{2i}}\right) \right]^{-1} \right\}$$
(1)

підгонкою параметрів E_{1i} , E_{2i} , H_{1i} , H_{2i} , до мінімальних значень спектрів. Ці наближення на рис. 2, *a* і 3, *a* показано суцільними кривими.

Рис. 2. Типові енергетичні спектри ядер 12 С із розсіяння 7 Li(12 C, 12 C) *a*) з неперервним фоном (криві – наближення фону) та *б*) без фону (криві - гауссіани).

Рис. 3. Типові енергетичні спектри ядер ⁷Lі з реакції ⁷Lі(12 C, ⁷Lі) *a*) з неперервним фоном (криві – наближення фону) та *б*) без фону (криві - гауссіани).

Піки в енергетичних безфонових спектрах (див. рис. 2, δ і 3, δ), що відповідають основним та збудженим станам ядер ¹²С і ⁷Li, наближувались симетричними гауссіанами

$$N(E) = \sum_{i} N_{i} \exp\left(-0.5 \frac{(E - E_{i})^{2}}{h_{i}^{2}}\right)$$
(2)

з використанням кінетичних енергій E_i для відповідних рівнів ядер та усередненого значення h_i ширин ізольованих піків. Підганялись лише максимальні значення N_i гауссіанів. На рисунках над піками показано енергії відповідних рівнів ядер ¹²С і ⁷Li. Енергетична роздільна здатність методики була обумовлена, в основному, розкидом енергії іонів в пучку на мішені (~ 0,5 %) та неоднорідними втратами ними енергії в мішені. Як видно на рис. 2, б і 3, б, роздільно спостерігались лише стани ядер з різницею енергій рівнів E > 0,5 MeB.

Площі гауссіанів використовувались для визначення диференціальних перерізів пружного й непружного розсіяння іонів ¹²С ядрами ⁷Li. При цьому для розсіяння іонів ¹²С на великі кути використовувались площі піків спектрів ⁷Li, враховуючи співвідношення $\theta_{c.п.м.}(^{12}C) = 180^{\circ} - \theta_{c.п.м.}(^{7}Li)$. Для отримання перерізів в абсолютних одиницях проводилось нормування їх до

розрахованих за оптичною моделлю (OM) диференціальних перерізів пружного розсіяння іонів 12 С на малі кути, де в основному переважає кулонівське розсіяння й теоретичні розрахунки незначно залежать від неоднозначності параметрів оптичного потенціалу. Похибка такої нормалізації перерізів не перевищує 20 %. Отриманий нормувальний множник використовувався також для абсолютизації перерізів непружного розсіяння іонів 12 С.

У даному експерименті при енергії $E_{na6.}(^{12}\text{C}) =$ = 115 МеВ поміряно диференціальні перерізи пружного розсіяння іонів ¹²С ядрами ⁷Li та непружного розсіяння цих іонів із збудженням станів 0,478 МеВ (1/2⁻), 4,63 МеВ (7/2⁻), 6,68 МеВ (5/2⁻), 7,46 МеВ (5/2⁻) і 9,67 МеВ (7/2⁻) + 9,85 МеВ (3/2⁻) ядра ⁷Li та збудженого стану 4,439 МеВ (2⁺) ядра ¹²С. Ці еспериментальні дані та відповідні теоретичні розрахунки показано на рис. 4 - 7.

Аналіз експериментальних даних Методи теоретичних розрахунків

Експериментальні дані пружного й непружного розсіяння ядер ⁷Li + ¹²C аналізувались за ОМ та методом зв'язаних каналів реакцій (M3KP) з використанням ядерного потенціалу типу Вудса -Саксона з об'ємним і поверхневим поглинаннями

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_S \left[1 + \exp\left(\frac{r - R_{W_S}}{a_{W_S}}\right) \right] +$$

$$+ i4W_D \exp\left(\frac{r - R_{W_D}}{a_{W_D}}\right) \left[1 + \exp\left(\frac{r - R_{W_D}}{a_{W_D}}\right)\right]^{-2}$$
(3)

та кулонівського потенціалу рівномірно зарядженої кулі

$$V_{C}(r) = \begin{cases} Z_{P} Z_{T} e^{2} (3 - r^{2} / R_{C}^{2}) / 2R_{C}, & r \leq R_{C}, \\ Z_{P} Z_{T} e^{2} / r, & r > R_{C}, \end{cases}$$
(4)

де

$$R_{i} = r_{i}(A_{p}^{1/3} + A_{T}^{1/3}), (i = V, W, C);$$
(5)

 A_P , Z_P та A_T , Z_T – маси та заряди ядер іонів і мішені відповідно. В усіх розрахунках параметр $r_C = 1,25$ фм.

Рис. 4. Диференціальні перерізи пружного розсіяння ядер ⁷Li + ¹²C залежно від переданого імпульсу при енергіях $E_{\text{лаб.}}(^{12}\text{C}) = 115 \text{ MeB}$ ($E_{\text{с.ц.м.}} = 42,37 \text{ MeB}$), $E_{\text{лаб.}}(^{7}\text{Li}) = 34 \text{ MeB}$ (21,49 MeB) [12], 63 MeB (39,79 MeB) [13] та розсіяння ядер ⁶Li + ¹²C при енергії $E_{\text{лаб.}}(^{6}\text{Li}) = 59,8 \text{ MeB}$ (39,87 MeB) [14].

Аналіз експериментальних даних розсіяння ядер ⁷Li + ¹²C проводився двоетапно. Спочатку аналізувались дані пружного розсіяння цих ядер за ОМ. Визначались параметри потенціалу взаємодії ядер ⁷Li + ¹²C методом підгонки ОМ-перерізів до експериментальних даних цього розсіяння за χ^2 -критерієм. При цьому особлива увага зверталась на задовільний опис даних для кутів $\theta_{c.п.м.} < 90^{\circ}$. Отриманий ОМ-набір параметрів (⁷Li + ¹²C)-потенціалу використовувався як початковий при наступному етапі аналізу даних за МЗКР.

 $d\sigma/d\Omega$, M δ/cp 3 10 2 10 ²C)⁷Li 10 115 MeB 1 10^{-1} 10⁻² 10⁻³ (nn' 10 10^{-5} 10^{-6} 1 10 م/م 1 10 10⁻² -3 10 10 0 30 60 90 120 150 180 **Ө°_{с.ц.м.}**

Рис. 5. Диференціальні перерізи пружного розсіяння ядер ⁷Li(¹²C, ¹²C)⁷Li при енергії $E_{лаб.}(^{12}C) =$ = 115 MeB. Штрихові криві – M3KP-перерізи для різних процесів (пояснення в тексті). Суцільні криві Σ – когерентні суми M3KP-перерізів усіх ядерних процесів.

При виконанні МЗКР-розрахунків у схему зв'язку каналів включались пружне та непружне розсіяння ядер 7 Li + 12 C, процеси реорієнтації спінів ядер та наймовірніші реакції передач нуклонів і кластерів.

При аналізі непружного розсіяння ядер 7 Li + 12 C за МЗКР вважалось, що досліджувані збуджені стани ядер 7 Li і 12 C мають колективну природу (ротаційні або вібраційні). У розрахунках матричних елементів переходів ядер у збуджені стани використовувався оператор

$$V_{\lambda}(r) = -\frac{\delta_{\lambda}}{\sqrt{4\pi}} \frac{dU(r)}{dr}, \qquad (6)$$

Рис. 6. Диференціальні перерізи непружного розсіяння ядер ⁷Li(¹²C, ¹²C)⁷Li при енергії $E_{\rm лаб.}(^{12}C) = 115$ МеВ для збуджених станів 0,478 МеВ (1/2⁻), 4,630 МеВ (7/2⁻) і 6,680 МеВ (5/2⁻) ядра ⁷Li та стану 4,439 МеВ (2⁺) ядра ¹²C. Криві – МЗКР-розрахунки. Кривою Σ показано некогерентну суму МЗКР-перерізів нерозділених в експерименті станів ядер.

Схеми переходів ядер ⁷Li i ¹²C у збуджені стани показано на рис. 8. Дугами на рисунку показано процеси реорієнтації спінів ядер. Матричні елементи реорієнтації спінів ядер обчислювалися як квадрупольні колективні переходи. Параметри деформації δ_{λ} ядер ⁷Li i ¹²C та передавані орбітальні моменти λ подано в табл. 1.

Рис. 8. Схеми переходів ядер ⁷Li і ¹²С у збуджені стани. Дугами позначено переходи реорієнтації спінів ядер

Діаграми реакцій передач, що включались у схему зв'язку каналів при проведені МЗКР-розрахунків, показано на рис. 9. Необхідні для де δ_{λ} - параметр деформації ядра λ -мультипольності.

Рис. 7. Те ж саме, що на рис. 6, але для збуджених станів 7,460 MeB ($5/2^{-}$) і 9,67 MeB ($7/2^{-}$) + + 9,85 MeB ($3/2^{-}$) ядра ⁷Li.

МЗКР-розрахунків спектроскопічні амплітуди S_x нуклонів і кластерів x в ядерних системах A = C + x обчислювались методом Смірнова -Чувільського в рамках трансляційно-інваріантної моделі оболонок (ТІМО) [3] за допомогою програми DESNA [4, 5] з використанням таблиць хвильових функцій ядер 1р-оболонки А. Н. Бояркіної [6]. Спектроскопічні амплітуди S_x подано в табл. 2.

ОМ- та МЗКР-розрахунки проводились за допомогою програм SPI-GENOA [7] та FRESCO [8] відповідно.

Для взаємодії ядер ⁷Li + ¹²С було обчислено фолдінг-потенціал за моделлю подвійної згортки:

$$V_f(r) = \int \rho_P(r_P) \rho_T(r_T) \upsilon(|\vec{r} + \vec{r}_T - \vec{r}_P|) d^3 r_P d^3 r_T , \quad (7)$$

де $\rho_{P}(r_{P})$, $\rho_{T}(r_{T})$ - розподіли густин нуклонів в ^{12}C ядрах (P)i ⁷Li (T)відповідно: $\upsilon(|\vec{r}+\vec{r}_{T}-\vec{r}_{P}|)=\upsilon(s)$ - нуклон-нуклонний потенціал; \vec{r} - відстань між центрами ядер. У розрахунках потенціалу $V_{4}(r)$ використовувався потенціал нуклон-нуклонної взаємодії МЗҮ Рейда (Reid). Розподіли нуклонів $\rho_T(r_T)$ і $\rho_P(r_P)$ обчислювались за розподілами зарядів (протонів) в ядрах ⁷Li і ¹²С [9]. Розрахунок фолдінг-потенціалу проводився за допомогою програми DFPOT [10, 11].

Ядро	$E_{36.}$, MeB	J^{π}	λ	δ_{λ} , фм	β_{λ}^{*}
⁷ Li	0,0	3/2-	2	2,0	0,84
	0,478	1/2-	2	2,0	0,84
	4,630	7/2-	2	2,0	0,84
			4	1,0	0,42
	6,680	5/2-	2	2,0	0,84
			4	1,0	0,42
	7,467	5/2-	2	2,0	0,84
			4	1,0	0,42
	9,670	7/2-	2	2,0	0,84
			4	1,0	0,42
	9,850	3/2-	2	2,0	0,84
^{12}C	4,439	2^{+}	2	-1,0	-0,35

Таблиця 1. Параметри деформації ядер

^{*} $\beta_{\lambda} = \delta_{\lambda}/R$, $R = 1,25A^{1/3}$ фм.

$$\frac{{}^{7}\text{Li}}{\overset{12}\text{C}} + \frac{{}^{7}\text{Li}}{\overset{12}\text{C}} + \frac{{}^{7}\text{Li}}{\overset{12}\text{Li}} + \frac{{}^{7}\text{Li}} + \frac{{}^{7}\text{Li}}{\overset{12}\text{Li}} + \frac{{}^{7}\text{Li}}{\overset{12}\text{L$$

Рис. 9. Діаграми найпростіших реакцій передач ⁷Li(¹²C, X) з виходом ядер ⁷Li та ¹²C.

Tаблиця 2. Спектроскопічні амплітуди S_x нуклонів та кластерів x у системах A = C + x

A	С	x	nL_i	S_x
⁷ Li	⁶ He	р	$1P_{3/2}$	0,805
⁷ Li	⁶ Li	n	$1P_{1/2}$	-0,657
			$1P_{3/2}$	$-0,735^{(a)}$
⁸ Li	⁷ Li	n	$1P_{1/2}$	0,478
⁸ Be	⁷ Li	р	$1P_{3/2}$	$1,234^{(a)}$
^{11}B	⁷ Li	ά	$3S_0$	-0,638
^{12}C	⁷ Li	⁵ Li	$3S_{3/2}$	$-0,793^{(a)}$
			$2D_{3/2}$	$-0,525^{(a)}$
			$2D_2$	-0,422
^{12}C	⁸ Be	α	$3S_0$	0,822
^{12}C	$^{11}\mathbf{B}$	р	$1P_{3/2}$	$-1,706^{(a)}$
^{12}C	¹¹ C	n	$1P_{3/2}$	$1,706^{(a)}$
¹³ C	^{12}C	n	$1P_{1/2}$	0,601
¹³ N	^{12}C	р	$1P_{1/2}$	0,601

^(a) $S_{\text{ERESCO}} = (-1)^{J_C + j - J_A} S_x = -S_x.$

Пружне розсіяння ядер 7 Li + 12 C

Диференціальні перерізи пружного розсіяння ядер ⁷Li + ¹²C при енергії $E_{\text{лаб.}}(^{12}\text{C}) = 115 \text{ МеВ}$ ($E_{\text{с.ц.м.}} = 42,37 \text{ МеВ}$) залежно від переданого імпульсу q_t представлено на рис. 4 у порівнянні a) з даними цього розсіяння при енергіях $E_{\text{лаб.}}(^7\text{Li}) = 34 \text{ МеВ}$ ($E_{\text{с.ц.м.}} = 21,49 \text{ МеВ}$) [12] і $E_{\text{лаб.}}(^7\text{Li}) = 63 \text{ МеВ}$ ($E_{\text{с.ц.м.}} = 39,79 \text{ МеВ}$) [13] та δ) з даними пружного розсіяння ядер ⁶Li + ¹²C при енергії $E_{\text{лаб.}}(^6\text{Li}) = 59,8 \text{ МеВ}$ ($E_{\text{с.ц.м.}} = 39,87 \text{ МеВ}$) [14]. Видно, що поміряні нами диференціальні перерізи пружного розсіяння ядер ⁷Li + ¹²C добре узгоджуються з даними цього розсіяння при інших енергіях (*a*) та незначно відрізняються відрізняються від даних пружного розсіяння ядер ⁶Li + ¹²C при енергії $E_{c.ц.м.} = 39,87$ MeB (δ). На рис. 5 кривими показано M3KP-розра-

На рис. 5 кривими показано МЗКР-розрахунки для пружного розсіяння ядер ⁷Li + ¹²C при енергії $E_{лаб.}(^{12}C) = 115$ МеВ для потенціального розсіяння (крива <pot>), процесу реорієнтації спіну ⁷Li (крива <reor>), реакції передачі ⁵Li-кластера (крива <⁵Li>), послідовних передач протонів і нейтронів (криві <pp> і <nn> відповідно) та протона і α-кластера – p + α і α + p (крива <pα>, когерентна сума). Видно, що в цьому пружному розсіянні основну роль відіграють потенціальне розсіяння та процес реорієнтації спіну ядра ⁷Li. Внески реакцій передач (крива , когерентна сума всіх реакцій передач) у цей канал незначні.

Непружне розсіяння ядер $^{7}Li + {}^{12}C$

Експериментальні дані непружного розсіяння ядер ⁷Li + ¹²C при енергії $E_{\text{лаб.}}(^{12}\text{C}) = 115 \text{ MeB}$ показано на рис. 6 і 7. Кривими на рисунках представлено МЗКР-перерізи для переходів ядра ⁷Li у стани колективного збудження 0,478 MeB (1/2⁻), 4,630 MeB (7/2⁻), 6,680 MeB (5/2⁻) (див. рис. 6) та 7,460 MeB (5/2⁻) і 9,67 MeB (7/2⁻) + 9,85 MeB (3/2⁻) (див. рис. 7). Кривими Σ показано некогерентні суми МЗКР-перерізів для нерозділених в експерименті рівнів ядер. Як зазначалось вище, у МЗКР-розрахунках використовувались параметри деформації ядер δ_{λ} , подані в табл. 1, та параметри потенціалу взаємодії ядер, представлені в табл. 3. Видно, що обчислені при цих значенях параметрів МЗКР-перерізи задовільно описують експериментальні дані непружного розсіяння ядер ⁷Li + ¹²C при енергії $E_{\rm лаб.}(^{12}C) = 115$ MeB.

Таблиця 3. Параметри потенціалу взаємодії ядер ⁷Li + ¹²C

V_0 , MeB	<i>r_V</i> , фм	<i>а_V</i> , фм	W_S , MeB	<i>r_{Ws}</i> , фм	<i>а_{Ws}</i> , фм	W_D , MeB	<i>r_{WD}</i> , фм	<i>а_{wD}</i> , фм
165,0	0,800	0,700	14,5	1,150	0,250	6,5	1,150	0,650

Потенціал взаємодії ядер ⁷Li + ¹²C та фолдінг-потенціал

Порівняння дійсної частини потенціалу взаємодії ядер ⁷Li + ¹²C, параметри якого було визначено з аналізу даних пружного розсіяння цих ядер, з фолдінг-потенціалом моделі подвійної згортки (7) показано на рис. 10.

Рис. 10. Порівняння потенціалу взаємодії ядер 7 Li + 12 C з фолдінг-потенціалом.

Видна добра узгодженість поверхонь обох потенціалів. На рисунку показано також уявну частину (7 Li + 12 C)-потенціалу. У ній спостерігається незначний максимум у приповерхневій області, положення якого вказує на основну область взаємодії ядер при даній енергії, де відбуваються непружні процеси (збудження ядер та реакції передач).

Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів пружного й непружного розсіяння ядер ⁷Li + ¹²C при енергії $E_{na6.}$ (⁷Li) = = 115 MeB для основних станів ядер ⁷Li i ¹²C та збуджених станів 0,478 MeB (1/2⁻), 4,630 MeB (7/2⁻), 6,680 MeB (5/2⁻), 7,460 MeB (5/2⁻) і 9,67 MeB (7/2⁻) + 9,85 MeB (3/2⁻) ядра ⁷Li і збудженого стану 4,439 MeB (2⁺) ядра ¹²C.

Експериментальні дані проаналізовано за ОМ та МЗКР із включенням у схему зв'язку каналів пружного й непружного розсіяння ядер ⁷Li + ¹²C, процесу реорієнтації спіну ядра ⁷Li та найпростіших реакцій передач нуклонів і кластерів, що можуть робити певні внески у вихідні канали розсіяння цих ядер. Установлено, що основну роль у пружному розсіянні ядер ⁷Li + ¹²C при даній енергії відіграє потенціальне розсіяння ядер, а також помітно впливає процес реорієнтації спіну ядра ⁷Li. Внески реакцій передач у канали розсіяння даних ядер незначні. Експериментальні дані непружного розсіяння ядер ⁷Li + ¹²C задовільно описуються МЗКР-перерізами для процесів колективного збудження цих ядер.

СПИСОК ЛІТЕРАРУРИ

- 1. *Kowalczyk M.*, SMAN: A Code for Nuclear Experiments, Warsaw University report (1998).
- 2. Чернієвський В.К, Русек К., Будзановскі А. та ін. Експериментальна установка для дослідження

ядерних реакцій на Варшавському циклотроні U-200Р // Зб. наук. праць Ін-ту ядерних досл. - 2002. - № 2 (8). - С. 216 - 224.

3. Smirnov Yu.F., Tchuvil'sky Yu.M. Cluster spectro-

scopic factors for the *p*-shell nuclei // Phys. Rev. C. - 1977. - Vol. 15, No. 1. - P. 84 - 93.

- Рудчик А.Т., Чувильский Ю.М., Вычисление спектроскопических амплитуд для произвольных ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). - К., 1982. - 27 с. - (Препр. АН УССР. Ин-т ядерных исслед.; КИЯИ-82-12).
- Рудчик А.Т., Чувильский Ю.М. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач // УФЖ. - 1985. - Т. 30, № 6. - С. 819 - 825.
- 6. Бояркина А.Н. Структура ядер 1*р*-оболочки. М.: Изд-во Москов. ун-та, 1973. 62 с.
- Nilsson B.S., SPI-GENOA: an Optical Model Search Code. - 1976 (Report / A Niels Bohr Institute).
- Thompson I.J. Coupled reaction channels calculations in nuclear physics // Comp. Phys. Rep. - 1988. -Vol. 7. - P. 167 - 212.
- 9. De Vries H., De Jager C. W., De Vries C. Nuclear charge-density-distribution parameters from elastic

electron scattering // Atomic data and nuclear data tables. - 1987. - Vol. 36. - P. 495 - 536.

- Cook J. DFPOT a program for the calculation of double folded potentials // Comp. Phys. Com. - 1982.
 - Vol. 25, Iss. 2. - P. 125 - 139.
- Cook J. DFPOT a program for the calculation of double folded potentials // Ibid. - 1984. - Vol. 35. -P. C - 775.
- Vineyard M.F., Cook J., Kemper K.W., Stephens M.N. Optical potentials for the elastic scattering of ⁶Li + ¹²C, ⁶Li + ¹⁶O, and ⁷Li + ¹²C // Phys. Rev. C. -1984. - Vol. 30. - P. 916 - 924.
- Zeller A.F., Lui Y.W., Tribble R.E., Tanner D.M. Optical potential parameters for the ¹²C(⁷Li, ⁷Li)¹²C reaction at 63 and 78.7 MeV // Ibid. 1980. Vol. 22. P. 1534 1538.
- 14. Bingham H.G., Halbert M.L., Hensley D.C. et al. Mirror states in A = 15 from 60 MeV ⁶Li-induced reactions on ¹²C // Ibid. 1975. Vol. 11. P. 1913 1924.

А. Т. Рудчик, В. Ю. Канищев, А. А. Рудчик, О. А. Понкратенко, Е. И. Кощий, С. Кличевски, К. Русек, В. А. Плюйко, С. Ю. Межевич, Вал. М. Пирнак, А. П. Ильин, В. В. Улещенко, Р. Сюдак, Я. Хоиньски, Б. Чех, А. Щурек

УПРУГОЕ И НЕПРУГОЕ РАССЕЯНИЕ ИОНОВ ¹²С ЯДРАМИ ⁷Li ПРИ ЭНЕРГИИ 115 МэВ

Получены новые экспериментальные данные дифференциальных сечений упругого и непругого рассеяния ядер ⁷Li + ¹²C при енергии $E_{\rm лаб.}(^{12}C) = 115$ МэВ в эксперименте с одновременным измерением реакций ⁷Li(¹²C, X) с выходом стабильных и нестабильных ядер с Z = 3 - 6. Экспериментальные данные проанализированы по оптической модели и методу связанных каналов реакций. Упругое и непругое рассеяние, процессы реориентации спина ⁷Li в основных и возбужденных состояниях, а также наиболее важные реакции передач включались в схему связи каналов. Получены значения параметров оптического потенциала взаимодействия ядер ⁷Li + ¹²C в основных и возбужденных состояниях, а также параметры деформации ядер ⁷Li и ¹²C. Оценены вклады реакций одно- и двухступенчатых передач в дифференциальные сечения упругого и непругого рассеяния ядер ⁷Li + ¹²C.

Ключевые слова: рассеяние тяжелых ионов, оптическая модель, метод связанных каналов реакций, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

A. T. Rudchik, V. Yu. Kanishchev, A. A. Rudchik, O. A. Ponkratenko, E. I. Koshchy, S. Kliczewski, K. Rusek, V. A. Plujko, S. Yu. Mezhevych, Val. M. Pirnak, A. P. Ilyin, V. V. Uleshchenko, R. Siudak, J. Choiński, B. Czech, A. Szczurek

ELASTIC AND INELASTIC SCATTERING OF ¹²C IONS BY ⁷Li AT 115 MeV

Angular distributions of the ⁷Li + ¹²C elastic and inelastic scattering as well as the ⁷Li(¹⁴N, X) reactions with exited stable and unstable nuclei with Z = 3-6 were measured at $E_{lab}(^{12}C) = 115$ MeV. The data were analyzed within the optical model and coupled-reaction-channels method. The elastic and inelastic scattering, reorientations of ⁷Li in ground and excited states as well as more important transfer reactions were included in the channels-coupling-scheme. ⁷Li + ¹²C optical potential parameters for ground and excited states of ⁷Li and ¹²C as well as deformation parameters of these nuclei were deduced. The contributions of one- and two-step transfers in the ⁷Li + ¹²C elastic and inelastic scattering channels were estimated.

Keywords: heavy-ion scattering, optical model, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.

Надійшла 14.01.2013 Received 14.01.2013