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The number of conductivity electrons ejected from the metal foil by incident ions is calculated in the Born
approximation. The interaction between the ion and electrons is approximated by the screened Coulomb potential. The
conductivity electrons are treated as an ideal gas, confined in the potential well. Attenuation of the electron wave,
excited by an ion inside the crystal, as well as its refraction at the crystal surface are taken into consideration.
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Introduction

For long time the bombardment of solids by ions
attracts attention of both experimentalists and
theorists due to numerous technical applications.
Lately the problem of secondary electron emission
became acute owing to construction of metal strip
detectors [1], which are used for monitoring of ion
beams at accelerators. Existing theories of inelastic
scattering of charged particles by solids, leading to
electron emission, consider mainly excitation of
electrons bound in the isolated atoms (see, e.g., [2 -
5]). The questions about ejection of the conductivity
electrons from the conductivity band in metals as
well as the role of crystal environment remain
beyond the scope of such approaches. All these
questions are addressed in our paper. It will be done
in analogy with our treatment [6, 7] of the shake-off
process of conductivity electrons, provided either by
B decay of the nuclei or by electron capture and
internal conversion, which lead to abrupt alteration
of the Coulomb field governing electrons. We shall
take into consideration attenuation of the electron
wave, to be excited by an ion moving through a
crystal, as well as its refraction at the surface. Note
that emission of loosely bound conductivity
electrons is much more effective than that of deeply
bound atomic electrons, since the inelastic scattering
cross section quickly falls down with increasing
energy transferred by a projectile to the target [4].

Basic equations

Let the crystal film have the thickness D=L,
and transversal dimensions L, xXL,. Its volume is
V.=8D, where S=L, L,. Hereafter we put the

origin of the coordinate frame x,y,z on the face

surface of the film and direct axis z perpendicularly
to it. The ions are incident from the region z <0
perpendicularly to the surface with the wave vector
k=1{0,0,x} and kinetic energy e(x)=rhx>/2M .
The film is assumed to be very thin, so that

the spreading of the ion beam over energies and
angles due to collisions with nuclei of the target can
be neglected.

In the metal the conductivity (valent) electrons,
moving in a periodic crystal potential U(r), are
described by the Bloch wave functions. We shall use
a simplified model, which treats electrons as free
particles, moving in the rectangular potential well

(see, e.g., [8])

UG -U, inside, 0
)=
0 outside.
The depth of this potential well equals
Uy=Ep+ 4, )

where E, =#h’q; /2m is the Fermi energy and 4 is

the work function. The radius of the Fermi sphere
equals [8]

g, =(3mn,) ", 3)

where n, is the concentration of the conductivity
electrons:

ny == )

Vo

v, 1s the volume of the elementary cell (we assume

that it contains one atom), v is the valency of the
atoms. The electron wave vectors run the values
21

qa: n(x’
o

o=x,y,z. The same expression is valid for all

where n,=0,£1,£2,.. and

other wave vectors inside the crystal.
The Hamiltonian of the system (ion + one
conductivity electron) can be written down as

H(r,R)=H,(r,R)+V(r), (5)
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where r and R are the radius-vectors of the

electron and nucleus of the incident ion,
respectively, r'=r—R..
The unperturbed Hamiltonian
- " n
H,=——A_ +U(r)———A,, 6
17 M U T A ©

where m and M are the electron and ion masses,
respectively.

Let the ion charge be AZe and the charge of its
nucleus be Ze. The Coulomb interaction of the
incident ion with any electron of the target should be
written in the form

V(r’)=—Zri,g<r’), )

where g(r") is the screening factor, which obeys the
condition g(0)=1. Outside the ion its potential

coincides with the potential of the point charge
AZe, screened by the cloud of free conductivity
electrons, i.e.,

2
e ®)

V)=~

where the screening length 7, is determined by the
well known formula [8]

E 1/2
iy = L . 9
’ [671@271()} ©

For completely stripped ions the interaction V(r’) is

described by Eq. (8) in the whole region 0 < 7' <oo.
At the same time, inside the ion, the density of bound
electrons, as a rule, much larger than the density of
free electrons, and the screening is realized mainly by
bound electrons. According to the Thomas - Fermi
statistical model their distribution is characterized by
the radius 7, =a,Z"* [5,9], where a,=h*/me’ is
the Bohr radius of the atom. The screening factor
g(r’), which satisfies all these constraints, can be

written as
’
Iy

(r')=£e +£e
& VA VA ’

,
—r'lr,

(10)

where Z'=Z7Z-AZ . Accordingly, the interaction
V(") becomes

72 2
Ze —r'/ra AZe —r'/ro

Vir')y=- > e —e 0. (11

r
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The eigenfunctions and eigenvalues of the operator
H , are determined by equation

H,0,(r,R) = E,,(r,R). (12)

We impose periodic boundary conditions on the
frontiers of the crystal. Then the conductivity
electrons, moving in the potential well (1), are
described by the wave functions

v, (1) =%e"‘". (13)

The corresponding energy will be

E(qQ)=-U,+h’q*/2m. (14)
The initial state of the system is described by the
product of the function (13) and plane wave to
describe the ion:

1w 1,
R)=—¢" —¢' =, 15
o,(r,R) T/Ee T/Ee (15)

The average number of electrons on the level q with
definite spin projection is determined by the Fermi
distribution

-1
— E(q)-E,
n(q)=|exp| ——= |[+1]| .

(q) { p[ KT

The electron flies away into the region z > D . In the

final state ¢, the wave vector of the ion is ',

(16)

whereas the electron attributes the wave vector K
inside the crystal and k outside it. The final electron
energy

K> hk?
2m B 2m

E(K)=-U,+ (17)
As to the ion, we assume that its both initial €(x)
and final €(x”) energies much exceeds U,, so that

refraction of the ion wave on the surface is
negligible. The energies of the system in the initial
and final states will be

E =E(q)+&(x), E, =EK)+¢e(x). (18)

Emission of electrons

The transition probability per unit time, calculated
in the Born approximation, is determined by

as (19)

2r
P b :7|Vba |2 8(E‘b _Ea)'
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Here the matrix element may be written as

_ 1 i(q-K)r' ’ ' 1 i(Q+q-K)R
V= [e" Oy ()dr > fe dR, (20)

c c

where Q=K —k' is the scattering vector of the ion.

The integration over R within a finite volume of the
crystal immediately gives the Kronequer symbol

8, .qusx» Which expresses the momentum
conservation law, from which it follows that
Q=K-q. 2D

It is convenient to write down these vectors in
cylindrical coordinates:

q = {g,cosd, g;sind, q.},

K ={K cos¢’, K, sin¢’, K_}, (22)

where q, and K denote their projections on the

plane x,y.

From inequality m << M it follows that the
velocity of heavy ion does not practically change
during collision with a light electron, i.e., 0 <<x.
This inequality and condition (21) allows us to
represent the delta function of Eq. (19) in the form

"L (k-1 (k). @3)

6(E‘a _E'b):?](([< )

where we introduced the notation

f(Kz>=[q2+%K(Kz—qz)—Kfj . (24)

By summing (19) over k and using the well-known
matrix element for the screened Coulomb potential
(see, e.g., [9]), one obtains the probability P, ,, for

the electron transition per unit time inside the crystal
from the state q to K:

2n 1| 4nZe’ m
K=_3_2 SK - Kz .
T g [  —/ &)
o
(25)

Collision of the incident ion with a conductivity
electron can occur with equal probability in any
volume element AV, inside the crystal film.
Therefore the unit time probability of the electron
transition q — K, occuring in the region from z to

z+Az, equals P, (Az/D). The electron wave,

q
born in this interval, suffers attenuation when
propagating towards the surface z=D . The main
reason of such an attenuation is an inelastic
scattering of the electron wave by vibrating ions of
the crystal [8]. The intensity of the electron beam,
which passed the distance x inside the crystal,
decreases exponentially:

I(x)=1(0)e™", (26)
where / is the mean-free path of the electrons. Its
energy dependence is usually described with the aid
of semi-empirical formulas, one of which reads [10]

I(E)=538GE> +0.41a"*E"?, (27)

where E=FE/l1eV and @ =v,/Inm’ with v,
representing the volume per one atom (for crystals
with single atom in the elementary cell v, is simply
the elementary cell volume).

The conductivity electron, which attributed
energy E’ in the target layer (z,z+Az), will fly
away from the crystal with the probability being
equal to exp{(D—z)/I(E")cos0,}T(K_), where 6,
is the angle between the vector K and the axis z,
while T'(K)) is the transmission coefficient of the
electron wave from the crystal to the vacuum:

4K
T(KZ):—Zkzz. (28)
(K. +k,)
From the energy conservation law (17) and
equality of the tangential components of the electron
wave vectors inside (K;) and outside (k) the

crystal it follows that

k,=\K>-2mU,/}*.

So the probability of the electron ejection in the
vacuum per unit time equals a product of all these
probabilities summed over the crystal layers along
the axis z from 0 to D:

29)

ou 1 (D, —(D-z)i(E)cosd
=P |, dze "T(K.). (30)

q—k -

The corresponding cross section, when the free
path / is much less than the film thickness D,
becomes

1 [(E")cos©
T — (3D

6, (Q=—Fx “T(K.),

where v=7hK/ M is the velocity of incident ions.
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This cross section should be yet averaged over all
possible final states of the electron and summed over
all electrons of the conductivity band. For this aim
we pass from summation over q and K to

integration:

2

- (32)

(2 ) (2 )

Integrating first (25) over K, we remove the &

function. Then making use of the expression

0’ =K*+¢* —2q,f (K, )coso—2¢. K, (33)

with oo = ¢’— ¢, we perform integration over o :

do

J'M _ 2na
0 (a+bcosa)’ (a’

_ b2)3/2 .

(34)

Here the following dimensionless parameters are
introduced:

a=1+[(q, _Kz)2 +KH2 +qH2]r02, b= _2Kuqu02' (35)

Integrating further over K_ one should keep in mind

that only electrons with K_>./2mU, /& are able to

overcome the potential barrier at the surface. The
upper limit of such an integration K, follows from

the evident requirement that K should be positive,

e., f(K,)=0. Equating f(K ) to zero, one has
the quadratic equation

K’ —%WKKZ+2VquZ—q2 =0, (36)
2.2
oq— (2Ze )j aK. <

Numerical estimations show that with good
accuracy at room temperature one can replace 7(q)

by unity at 0<¢g<gq, and zero otherwise since
k,T << E,. . Therefore we replace g, by ¢, .

The flux of electrons emitted from the target is
given by [11]

J

out = GenOI/ch’ (40)

where j, is the flux density of incident ions.

Accordingly, the number of electrons, knocked from
a metal film by one ion (j, =1/S), is
Y=o,n,D. (41)

Substituting here Eqs. (38), (39) and taking into
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whose roots are

2
Kf=ﬂ1<i Tl -
M M

The function f(K.)>0, when K <K <K .
Hence, the upper limit of integration K, = K_ . But it

2mKg, e
M

(37

remains to choose the lower limit K, which is

greater both numbers K~ and /2mU, /& . Note that

K. reaches its maximal value K  when
={0,0,q}. But for the conductivity electrons
bound in the crystal g always less than 2mU, / k.

Therefore we must take K, =./2mU, / k.

Averaging over the initial states q of the

conductivity band should be carried out within the
sphere of the radius ¢,, which contains all the

electrons, i.e., n(q,)=0. The only restriction for

such a radius is that ¢, <,2mU, /h, when the

electrons are still bound in the crystal.

Thus, we arrive at the following expression for
the integral cross section of the electron ejection,
being produced by incident ions:

(38)

0—4 o«

where integration has to be done in the sphere of the
radius ¢, , the cross section G, characterizes the

electron emission from the level q :

a [(E")cosO

0T (K.). (39)

_ b2 )3/2 D

account the above remarks one has finally

3nmM ar N
Y:—g(zzezroz )ZJ‘_ dqu‘ quqH X
(7<) (g ) a0
K, a ,
X j . dszl(E YcosO,T(K.)n,  (42)
with cos,=K_/K.
Discussion

In our paper we analyzed emission of the
conductivity electrons from metals bombarded by
ions, taking for the first time into account spreading
of these electrons over the levels of the conductivity
band, corresponding to different energies and
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momenta. Moreover, we regarded the role of the
electron screening of the coulomb interaction
between incident ions and electrons of the target.

We performed numerical calculations of the
electron yield produced by protons and deuterons
incident on the golden film. The screening radius for
point charge in the golden crystal has been
calculated by means of the formula (9). It occurs to
be equal 5.8 nm. For protons the results are
presented in the Figure, when its energy ranges from
0 to 100 keV.

12 T T T T

3r
10 t 0

2I’0

¥ (ef/ion)
(o))

o

O 1 1 1 1
0 20 40 60 80 100
E, keV

Dependence of the electron yield from Au on the energy
of incident protons for different screening radii
(7, =5.8 nm).

The protons with such energies have velocities of
the same order of magnitude as the conductivity
electrons on the Fermi level. Therefore the electrons
are able to follow moving protons. In other words, a
proton entering the crystal gives rise to polarization
of electrons in the conductivity band, which then
moves together with the proton inside the crystal. As
a result, polarized cloud of electrons screens the
Coulomb field of the projectile. However, this
screening may be more weak than that in the case of

a stationary charge embedded in a crystal
Respectively, the screening radius becomes larger
than 7, given above. Therefore in the figure we

displayed also the curves for the screening lengths
2r, and 3r,. We see that the yield of secondary

electrons quickly falls down with decreasing
screening length. Such behavior has simple
explanation. With lowering screening radius the
attractive Coulomb potential of the ion narrows, that
is its effective attraction weakens. Then the
conductivity electron, moving relative to the ion,
spends less time in this potential well, that leads to
lowering of the kinetic energy transfer probability
from the ion to electron (see also [12]).

Notice that the emission curves for deuterons and
protons, when plotted as a function of their
velocities, completely coincide in correspondence
with the observations [3]. Magnitude of the
secondary electron yield from Au by protons
correlates with the experimental data [3], if we take
the screening length somewhat larger than 7. But

calculated curve for the electron yield occurs to be
narrower and shifted to lower energies compared to
experimental curve. This may be explained as
follows.

The formulas for the secondary emission
coefficient y were derived in the single-collision

approximation, i.e., we have been assuming that the
charged projectile collides with any electron of the
target only one time. This can be fulfilled only for
extremely thin films. Generally when passing a
target the ion losses its energy in multiple collisions
with nuclei and electrons as well as changes
direction of its motion. The rate of such energy
losses is characterized by so-called inelastic
stopping power dE /dx , which must be inserted in
equations for quantitative analysis of the
experimental data.
This program will be realized later.
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0. A. I3w6auk, B. 10. CniBak, A. B. Yayc
EMICIsI EJIEKTPOHIB MMPOBIJHOCTI 3 METAJIIB, CHIPUMUHEHA IOHAMUAX

Y OopHIBCbKOMY HaONMKEHHI MOPAaXOBaHO KUIBKICTH €JEKTPOHIB ITPOBIIHOCTI, BUOMTHUX 3 METAJIYHOI IUTIBKH
MAJal0OYUMH i0HaMH. B3aemomiss MK i0HOM Ta eNeKTPOHAMHU alpOKCHMYETHCS EKPaHOBAHUM KYyJIOHIBCHKAM IOTEH-
miaoM. EeKTpoHHM MpOBITHOCTI TPaKTYIOThCA SIK ieadbHUN Ta3 y MOTEHI[iambHIN sMi. BpaxoBaHO 3aTyxaHHS
€JIEKTPOHHOI XBHJIi, 30y/KEHOT 10HOM BCepeIrHi KpUCTalia, a TAKOX ii 3aJJOMJIIEHHS Ha IOBEPXHI KpUCTaJa.

Knrouogi cnosa: BTOpUHHA €TEKTPOHHA €MICisl, MeTaJeBi CTPIM-AETEKTOPH, 10HH, ETIEKTPOHHU MPOBITHOCTI.

A. 5. 3106k, B. FO. CnuBak, A. B. Uayc
OMUCCHUS DSJEKTPOHOB MMPOBOANMMOCTHU U3 METAJIJIOB, BBI3BBAHHASI HOHAMUA

B 0opHOBCKOM TPHOIIKEHIH BBIYHCICHO KOJMYECTBO DIICKTPOHOB, U3IYYCHHBIX M3 METAIIMYECKOW TUIEHKH TOJ
JefcTBHEM TaNalouX HOHOB. B3anmMonmeiicTBre MeXIy HOHOM U DJIEKTPOHAMH ANPOKCHMHPYETCS SKpaHHPOBAHHBIM
KYJIOHOBCKHM TIIOTCHIIHAIOM. DIIEKTPOHBI MPOBOJUMOCTH TPAaKTYIOTCA KaK HICANBHBIA ra3 B TOTCHIHMATBHOW sIMeE.
Y4ureHo 3aTyxaHHE JIEKTPOHHOW BOJIHBI, BO30YKICHHOI MOHOM BCEpeAMHE KPHCTAlIa, a TakXkKe ee MpeJIOMIICHHE Ha
MTOBEPXHOCTH KPHUCTAILIA.

Kniouesvie cnosa: BTOpWYHAs DSIEKTPOHHAS DMHCCHS, METAUIMYECKHE CTPHI-AETEKTOPH, HOHBI, AJIEKTPOHBI
MPOBOIUMOCTH.
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