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The number of conductivity electrons ejected from the metal foil by incident ions is calculated in the Born 

approximation. The interaction between the ion and electrons is approximated by the screened Coulomb potential. The 
conductivity electrons are treated as an ideal gas, confined in the potential well. Attenuation of the electron wave, 
excited by an ion inside the crystal, as well as its refraction at the crystal surface are taken into consideration.  
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Introduction 
 

For long time the bombardment of solids by ions 
attracts attention of both experimentalists and 
theorists due to numerous technical applications. 
Lately the problem of secondary electron emission 
became acute owing to construction of metal strip 
detectors [1], which are used for monitoring of ion 
beams at accelerators. Existing theories of inelastic 
scattering of charged particles by solids, leading to 
electron emission, consider mainly excitation of 
electrons bound in the isolated atoms (see, e.g., [2 - 
5]). The questions about ejection of the conductivity 
electrons from the conductivity band in metals as 
well as the role of crystal environment remain 
beyond the scope of such approaches. All these 
questions are addressed in our paper. It will be done 
in analogy with our treatment [6, 7] of the shake-off 
process of conductivity electrons, provided either by 
β  decay of the nuclei or by electron capture and 
internal conversion, which lead to abrupt alteration 
of the Coulomb field governing electrons. We shall 
take into consideration attenuation of the electron 
wave, to be excited by an ion moving through a 
crystal, as well as its refraction at the surface. Note 
that emission of loosely bound conductivity 
electrons is much more effective than that of deeply 
bound atomic electrons, since the inelastic scattering 
cross section quickly falls down with increasing 
energy transferred by a projectile to the target [4]. 

 
Basic equations 

 
Let the crystal film have the thickness 3D L=  

and transversal dimensions 1 2L L× . Its volume is 
=cV SD , where 1 2=S L L . Hereafter we put the 

origin of the coordinate frame , ,x y z  on the face 
surface of the film and direct axis z  perpendicularly 
to it. The ions are incident from the region < 0z  
perpendicularly to the surface with the wave vector 

= {0,0, }κκ  and kinetic energy 2 2( ) = / 2Mε κ κ . 
The film is assumed to be very thin, so that 

the spreading of the ion beam over energies and 
angles due to collisions with nuclei of the target can 
be neglected. 

In the metal the conductivity (valent) electrons, 
moving in a periodic crystal potential ( )U r , are 
described by the Bloch wave functions. We shall use 
a simplified model, which treats electrons as free 
particles, moving in the rectangular potential well 
(see, e.g., [8]) 

 

0 inside,
( ) =

0 outside.
U

U r
−⎧
⎨
⎩

                     (1) 

 
The depth of this potential well equals 

 

0 = ,FU E A+                             (2) 
 

where 2 2= / 2F FE q m  is the Fermi energy and A  is 
the work function. The radius of the Fermi sphere 
equals [8] 

 

( )1/32
0= 3 ,Fq nπ                         (3) 

 
where 0n  is the concentration of the conductivity 
electrons: 
 

0
0

= ,
v

n ν                                 (4) 

 

0v  is the volume of the elementary cell (we assume 
that it contains one atom), ν  is the valency of the 
atoms. The electron wave vectors run the values 

2q n
Lα α

α

π= , where 0, 1, 2, ...nα = ± ±  and 

, ,x y zα = . The same expression is valid for all 
other wave vectors inside the crystal. 

The Hamiltonian of the system (ion + one 
conductivity electron) can be written down as 

 

0
ˆ ˆ( , ) = ( , ) ( ),H H V ′+r R r R r                  (5) 
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where r  and R  are the radius-vectors of the 
electron and nucleus of the incident ion, 
respectively, = −r' r R . 

The unperturbed Hamiltonian 
 

2 2

0
ˆ = ( ) ,

2 2
H U

m M
− Δ + − Δr Rr                (6) 

 
where m  and M  are the electron and ion masses, 
respectively. 

Let the ion charge be ZeΔ  and the charge of its 
nucleus be Ze . The Coulomb interaction of the 
incident ion with any electron of the target should be 
written in the form 

 
2

( ) = ( ),ZeV r g r
r

′ ′−
′

                     (7) 

 
where ( )g r′  is the screening factor, which obeys the 
condition (0) = 1g . Outside the ion its potential 
coincides with the potential of the point charge 

ZeΔ , screened by the cloud of free conductivity 
electrons, i.e., 

 

0

2
/( ) ,r rZeV r e

r
′−Δ′ ≈ −

′
                    (8) 

 

where the screening length 0r  is determined by the 
well known formula [8] 

 
1/2

0 2
0

= .
6

FEr
e n

⎛ ⎞
⎜ ⎟π⎝ ⎠

                      (9) 

 
For completely stripped ions the interaction ( )V r′  is 
described by Eq. (8) in the whole region 0 ' <r≤ ∞ . 
At the same time, inside the ion, the density of bound 
electrons, as a rule, much larger than the density of 
free electrons, and the screening is realized mainly by 
bound electrons. According to the Thomas - Fermi 
statistical model their distribution is characterized by 
the radius 1/3

0=ar a Z −  [5,9], where 2 2
0 = /a me  is 

the Bohr radius of the atom. The screening factor 
( )g r′ , which satisfies all these constraints, can be 

written as 
 

0/ /( ) = ,ar r r rZ Zg r e e
Z Z

′ ′− −′ Δ′ +               (10) 

 
where =Z Z Z′ − Δ . Accordingly, the interaction 

( )V r′  becomes 
 

2 2
/ / 0( ) = .r r r raZ e ZeV r e e

r r
′ ′− −′ Δ′ − −

′ ′
          (11) 

The eigenfunctions and eigenvalues of the operator 

0Ĥ  are determined by equation 
 

0
ˆ ( , ) = ( , ).b b bH Eφ φr R r R             (12) 

 
We impose periodic boundary conditions on the 
frontiers of the crystal. Then the conductivity 
electrons, moving in the potential well (1), are 
described by the wave functions 

 
1( ) = .i

c

r e
V

ψ qr
q                    (13) 

 
The corresponding energy will be 

 
2 2

0( ) = / 2 .E U q m− +q             (14) 
 

The initial state of the system is described by the 
product of the function (13) and plane wave to 
describe the ion: 

 
1 1( , ) = .i i

a
c c

e e
V V

φ qr κRr R               (15) 

 
The average number of electrons on the level q with 
definite spin projection is determined by the Fermi 
distribution 

 
1

( )( ) = exp 1 .F

B

E En
k T

−
⎡ ⎤⎛ ⎞− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

qq           (16) 

 
The electron flies away into the region >z D . In the 
final state bφ  the wave vector of the ion is 'κ , 
whereas the electron attributes the wave vector K  
inside the crystal and k  outside it. The final electron 
energy 

 
2 2 2 2

0( ) = = .
2 2
K kE K U
m m

− +               (17) 

 
As to the ion, we assume that its both initial ( )ε κ  
and final ( )′ε κ  energies much exceeds 0U , so that 
refraction of the ion wave on the surface is 
negligible. The energies of the system in the initial 
and final states will be 

 
= ( ) ( ), = ( ) ( ).a bE E q E E K ′+ ε κ + ε κ       (18) 

 
Emission of electrons 

 
The transition probability per unit time, calculated 

in the Born approximation, is determined by 
 

22= | | ( ).a b ba b aP V E E→
π δ −               (19) 
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Here the matrix element may be written as 
 

( ) ' ( )1 1= ( ) ' ,i i
ba

c c

V e V r d e d
V V

− + −′∫ ∫q K r Q q K Rr R    (20) 

 
where = '−Q κ κ  is the scattering vector of the ion. 
The integration over R  within a finite volume of the 
crystal immediately gives the Kronequer symbol 

, '+ +δκ q κ K , which expresses the momentum 
conservation law, from which it follows that 

 
= .−Q K q                           (21) 

 
It is convenient to write down these vectors in 

cylindrical coordinates: 
 

|| ||= { cos , sin , },zq q qφ φq  
 

|| ||= { cos , sin , },zK K K′ ′φ φK           (22) 
 

where ||q  and ||K  denote their projections on the 
plane ,x y . 

From inequality <<m M  it follows that the 
velocity of heavy ion does not practically change 
during collision with a light electron, i.e., <<Q κ . 
This inequality and condition (21) allows us to 
represent the delta function of Eq. (19) in the form 

 

( )||2

1( ) ( ) ,
( )a b z

z

mE E K f K
f K

δ − ≈ δ −    (23) 

 
where we introduced the notation 

 
1/2

2 22( ) = ( ) .z z z z
mf K q K q K

M
⎛ ⎞+ κ − −⎜ ⎟
⎝ ⎠

  (24) 

 
By summing (19) over κ  and using the well-known 
matrix element for the screened Coulomb potential 
(see, e.g., [9]), one obtains the probability P →q K  for 
the electron transition per unit time inside the crystal 
from the state q  to K : 

 

2

||3 2
2

2
0

2 1 4 ( ( )).1 (K ) z
c z

Ze mP K f K
V fQ

r

→

⎛ ⎞
⎜ ⎟π π⎜ ⎟= δ −
⎜ ⎟+⎜ ⎟
⎝ ⎠

q K  

(25) 
 

Collision of the incident ion with a conductivity 
electron can occur with equal probability in any 
volume element cVΔ  inside the crystal film. 
Therefore the unit time probability of the electron 
transition →q K , occuring in the region from z  to 

z z+ Δ , equals ( / )P z D→ Δq K . The electron wave, 
born in this interval, suffers attenuation when 
propagating towards the surface =z D . The main 
reason of such an attenuation is an inelastic 
scattering of the electron wave by vibrating ions of 
the crystal [8]. The intensity of the electron beam, 
which passed the distance x  inside the crystal, 
decreases exponentially: 

 
/( ) = (0) ,x lI x I e−                  (26) 

 
where l  is the mean-free path of the electrons. Its 
energy dependence is usually described with the aid 
of semi-empirical formulas, one of which reads [10] 

 
2 3/2 1/2( ) = 538 0.41 ,l E aE a E− +          (27) 

 

where = /1E E eV and 3
0= v /1a nm 3  with 0v  

representing the volume per one atom (for crystals 
with single atom in the elementary cell 0v  is simply 
the elementary cell volume). 

The conductivity electron, which attributed 
energy E′  in the target layer ( , )z z z+ Δ , will fly 
away from the crystal with the probability being 
equal to 0{( ) / ( )cos } ( )zexp D z l E T K′− θ , where 0θ  
is the angle between the vector K  and the axis z, 
while ( )zT K  is the transmission coefficient of the 
electron wave from the crystal to the vacuum: 

 

2

4( ) = .
( )

z z
z

z z

K kT K
K k+

                   (28) 

 
From the energy conservation law (17) and 

equality of the tangential components of the electron 
wave vectors inside ( ||K ) and outside ( ||k ) the 
crystal it follows that 
 

2 2
0= 2 / .z zk K mU−               (29) 

 
So the probability of the electron ejection in the 

vacuum per unit time equals  a product of all these 
probabilities summed over the crystal layers along 
the axis z from 0 to D: 

 

( )/ ( ) cos 0
0

1= ( ).
D D z l Eout

zP P dze T K
D

′− − θ
→ → ∫q k q K   (30) 

 
The corresponding cross section, when the free 

path l  is much less than the film thickness D , 
becomes 

 

01 ( )cos( ) = ( ),z
l EP T K

v D→
′ θσq q KQ    (31) 

 
where = /v Mκ  is the velocity of incident ions. 
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This cross section should be yet averaged over all 
possible final states of the electron and summed over 
all electrons of the conductivity band. For this aim 
we pass from summation over q  and K  to 
integration: 

 

3 ,
(2 )

cV d→
π∑ ∫

q

q        3(2 )
cV d→

π∑ ∫
K

K .   (32) 

 
Integrating first (25) over ||K , we remove the δ  
function. Then making use of the expression 

 
2 2 2

||= 2 (K )cos 2 Kz z zQ K q q f q+ − α −    (33) 
 

with = ′α φ − φ , we perform integration over α : 
 

2

2 2 2 3/20

2= .
( cos ) ( )

d a
a b a b

π α π
+ α −∫            (34) 

 
Here the following dimensionless parameters are 
introduced: 

 
2 2 2 2 2

|| || 0 || || 0= 1 [( ) ] , = 2 .z za q K K q r b K q r+ − + + −  (35) 
 

Integrating further over zK  one should keep in mind 
that only electrons with 0> 2 /zK mU  are able to 
overcome the potential barrier at the surface. The 
upper limit of such an integration 2K  follows from 
the evident requirement that ||K  should be positive, 
i.e., ( ) 0zf K ≥ . Equating ( )zf K  to zero, one has 
the quadratic equation 

 

2 22 2 = 0,z z z
m mK K q q

M M
− κ + κ −          (36) 

 

whose roots are 
 
2

22= .z
z

m m m qK q
M M M

± κ⎛ ⎞κ ± κ − +⎜ ⎟
⎝ ⎠

         (37) 

 

The function ( ) > 0zf K , when < <z z zK K K− + . 
Hence, the upper limit of integration 2 = zK K + . But it 
remains to choose the lower limit 1K , which is 
greater both numbers zK −  and 02 /mU . Note that 

zK −  reaches its maximal value K  when 
= {0,0, }qq . But for the conductivity electrons 

bound in the crystal q  always less than 02 /mU . 

Therefore we must take 1 0= 2 /K mU . 
Averaging over the initial states q  of the 

conductivity band should be carried out within the 
sphere of the radius mq , which contains all the 
electrons, i.e., ( ) 0mn q ≈ . The only restriction for 
such a radius is that 0< 2 /mq mU , when the 
electrons are still bound in the crystal. 

Thus, we arrive at the following expression for 
the integral cross section of the electron ejection, 
being produced by incident ions: 

 

3

3= ( ) ,
4e

F

d n
q

σ σ
π ∫ qq q                 (38) 

 
where integration has to be done in the sphere of the 
radius mq , the cross section σq  characterizes the 
electron emission from the level q : 

2

1

2 2 2 0
03 2 2 3/2

2 ( )cos= (2 ) ( ).
v ( )

K

z zK

m a l EZe r dK T K
a b D

′π θσ
−∫q                                (39)

 
Numerical estimations show that with good 

accuracy at room temperature one can replace ( )n q  
by unity at 0 Fq q≤ ≤  and zero otherwise since 

<<B Fk T E . Therefore we replace mq  by Fq . 
The flux of electrons emitted from the target is 

given by [11] 
 

0 0= ,out e cJ n V jσ                        (40) 
 

where 0j  is the flux density of incident ions. 
Accordingly, the number of electrons, knocked from 
a metal film by one ion 0( = 1/ )j S , is 

 

0= .en Dγ σ                           (41) 
 

Substituting here Eqs. (38), (39) and taking into 

account the above remarks one has finally 
 

2 2
2 2 2

0 || ||3 0

3 (2 )
( )( )

F F z

F

q q q

zq
F

mM Ze r dq q dq
q

−

−

πγ = ×
κ ∫ ∫  

 

2

1
0 02 2 3/2 ( )cos ( )

( )
K

z zK

adK l E T K n
a b

′× θ
−∫      (42) 

 
with 0cos = /zK Kθ . 
 

Discussion 
 

In our paper we analyzed emission of the 
conductivity electrons from metals bombarded by 
ions, taking for the first time into account spreading 
of these electrons over the levels of the conductivity 
band, corresponding to different energies and 
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momenta. Moreover, we regarded the role of the 
electron screening of the coulomb interaction 
between incident ions and electrons of the target.   

We performed numerical calculations of the 
electron yield produced by protons and deuterons 
incident on the golden film. The screening radius for 
point charge in the golden crystal has been 
calculated by means of the  formula (9). It occurs to 
be equal 5.8 nm. For protons the results are 
presented in the Figure, when its energy ranges from 
0 to 100 keV. 
 

Dependence of the electron yield from Au on the energy 
of incident protons for different screening radii  

( 0 5.8r =  nm). 
 

The protons with such energies have velocities of 
the same order of magnitude as the conductivity 
electrons on the Fermi level. Therefore the electrons 
are able to follow moving protons. In other words, a 
proton entering the crystal gives rise to polarization 
of electrons in the conductivity band, which then 
moves together with the proton inside the crystal. As 
a result, polarized cloud of electrons screens the 
Coulomb field of the projectile. However, this 
screening may be more weak than that in the case of  

a stationary charge embedded in a crystal. 
Respectively, the screening radius becomes larger 
than 0r  given above. Therefore in the figure we 
displayed also the curves for the screening lengths 

02r  and 03r . We see that the yield of secondary 
electrons quickly falls down with decreasing 
screening length. Such behavior has simple 
explanation. With lowering screening radius the 
attractive Coulomb potential of the ion narrows, that 
is its effective attraction weakens. Then the 
conductivity electron, moving relative to the ion, 
spends less time in this potential well, that leads to 
lowering of the kinetic energy transfer probability 
from the ion to electron (see also [12]). 

Notice that the emission curves for deuterons and 
protons, when plotted as a function of their 
velocities, completely coincide in correspondence 
with the observations [3]. Magnitude of the 
secondary electron yield from Au by protons 
correlates with the experimental data [3], if we take 
the screening length somewhat larger than 0r . But 
calculated curve for the electron yield occurs to be 
narrower and shifted to lower energies compared to 
experimental curve. This may be explained as 
follows. 

The formulas for the secondary emission 
coefficient γ  were derived in the single-collision 
approximation, i.e., we have been assuming that the 
charged projectile collides with any electron of the 
target only one time. This can be fulfilled only for 
extremely thin films. Generally when passing a 
target the ion losses its energy in multiple collisions 
with nuclei and electrons as well as changes 
direction of its motion. The rate of such energy 
losses is characterized by so-called inelastic 
stopping power /dE dx , which must be inserted in 
equations for quantitative analysis of the 
experimental data. 

This program will be realized later. 
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О. Я. Дзюблик,  В. Ю. Співак,  А. В. Чаус 

 
ЕМІСІЯ  ЕЛЕКТРОНІВ  ПРОВІДНОСТІ  З  МЕТАЛІВ,  СПРИЧИНЕНА  ІОНАМИ 

 
У борнівському наближенні пораховано кількість електронів провідності, вибитих з металічної плівки 

падаючими іонами. Взаємодія між іоном та електронами апроксимується екранованим кулонівським потен-
ціалом. Електрони провідності трактуються як ідеальний газ у потенціальній ямі. Враховано затухання 
електронної хвилі, збудженої іоном всередині кристала, а також її заломлення  на поверхні кристала. 

Ключові слова: вторинна електронна емісія, металеві стріп-детектори, іони, електрони провідності. 
 

А. Я. Дзюблик,  В. Ю. Спивак,  А. В. Чаус 
 

ЭМИССИЯ  ЭЛЕКТРОНОВ  ПРОВОДИМОСТИ  ИЗ  МЕТАЛЛОВ,  ВЫЗВАННАЯ  ИОНАМИ 
 

В борновском приближении вычислено количество электронов, излученных из металлической пленки под 
действием падающих ионов. Взаимодействие между ионом и электронами апроксимируется экранированным 
кулоновским потенциалом. Электроны проводимости трактуются как идеальный газ в потенциальной яме. 
Учтено затухание электронной волны, возбужденной ионом всередине кристалла, а также ее преломление на 
поверхности кристалла. 

Ключевые слова: вторичная электронная эмиссия, металлические стрип-детекторы, ионы, электроны 
проводимости. 
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