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WITH TWO-FRAGMENT RESONANCE FORMATION

The modified final-state interaction theory taking into consideration the Coulomb interaction between two-fragment
nuclear resonance decay products and accompanying reaction products is developed including the case of near-
threshold resonances. The branching ratio change is also studied for the near-threshold resonance 'Li*(Ex = 7.45 MeV),
which is formed in the reaction "Li(a, o)’Li" at E, = 27.2 MeV.
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Introduction

In this article we study the possible deviations
(with respect to the properties of the resonance in the
isolated pair) of the parameters of a two-body
resonance in the Coulomb field of a third particle,
especially in the case of reactions with the near-
threshold resonance formation. The reactions of the
type

a+A—->1+b —>1+2+3

have been extensively investigated lately in a
number of both theoretical and experimental studies
[1 - 9]. The influence of accompanying particle on
the resonance decay is known as the PSI (post-
collision interaction) effect [2, 8]. This influence is
most pronounced in the cases when the reaction final
state is characterized by the great values of Coulomb
parameters, which determines the external Coulomb
field intensity.

The experimental data obtained in the reactions
with light nuclei resonant state excitation have
shown that the deviation pointed out could range up
to 100 % values for the observable resonance
excitation energy E. and its half width T /2 with
respect to the parameters E,and I'/2, determining
the isolated resonance  complex  energy
Z,=E,—iT/2. It was shown in [4, 10] that in the
case of resonances far from the decay thresholds the
resonance curves are always broadened in
accordance with experimental data. The case of the
near-threshold resonance is more complicated: the
resonance peak can be narrowed at some kinematical
conditions [7]. Moreover, the effect of the branching
ratio change can take place [4, 11].

The modification of the theory represented in
[4, 10] is developed below for the case of the post-
collision Coulomb interaction in reactions with the
near-threshold resonance formation.
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The model

In the case under investigation short range
nuclear forces are responsible for the resonance
formation, so the known expression for the reaction
amplitude, which takes into account the Coulomb
interaction of the reaction products on the
background of their nuclear interaction, can be used
[10]:

T (KysPy, B, +10) =Te (KyqPBy, By, E +i0) +
+<\I/;;(lz23 pl)‘vﬁ -U, +

+(VP —U,)G(E+i0)(V* -U,)

V.. (Bo))- (1)

Here, indexes o and B denote the initial and
G(Z)=
=(Z-H)" is the total Green’s function of the
system with the Hamiltonian H, Z =E +i0 is the

energy of the system. The potential VP =V +V? is

the sum of the nuclear and Coulomb potentials,
acting between particles from different fragments in
the final channel, Ug is the Coulomb interaction

final reaction channels respectively,

between produced fragments, ‘\yg(@sﬁl» is the

wave function of the outgoing reaction channel of
the form

o) e () )

where |CDJ.> is the bound-state wave function of the

fragment j and ‘\ug (E23ﬁ1)> is the wave function of

the pure Coulomb scattering of produced fragments,
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i.e. for the potential U,. The state |\|1;(r)0)> is

determined in the same way. The channel
Hamiltonian H, has the form

Hﬁ=H0+Zhj,
i

where H, is the free Hamiltonian of the three-body
system and h; denotes the j-th fragment internal
motion, so that

hy|@;) =3[ ®;).

_ij being the binding energy of the fragment j.

Usually, k,; and p, are the Jacobi coordinates of

the three-body system in the momentum space,

therefore, the energy of the system is equal to

k2 2 3

Y
j=1

E — pl
2n,

where p,, and n, are the corresponding reduced
masses
m2m3

Hy=—22 n =n
2 omyem,

m, (m, +m,)

Y moem,+m,

Finally, T. is the amplitude of the pure Coulomb
transition between channels o and 3.

To extract the resonant behavior of the reaction
amplitude (1) we perform the following. We start |

gzs(z) = R23(Z)+%:[I + R23(Z)W]|CDM >—<CDM |[WR23(Z)+ I]‘

In the expansion (3) it is supposed that the
Hamiltonian h,, is represented in the form

h,=h,, +W,

where the Hamiltonian h,, has the bound state

embedded in the continuous spectrum,

P=>|®, )(®,] is the projection operator on this
M

bound state, while W is some perturbation potential.
The operator R,(Z) is the resolvent of the

Hamiltonian Qh,,Q in the truncated Hilbert space
withQ=1-P
R, (Z)=(ZQ-Qh,Q) Q.
The function w(Z) is determined as
co(Z) =7 —¢, —<<1>M |W +WR23(Z)W |CI>M>, 4

where g, is given by the relation

from the second resolvent identity for G(Z):

G(Z)=Gy(2)+G4(Z)VEG(Z), (2)

where the operator G,(Z)=(Z-H,) s the

Green's function for the Hamiltonian H,, = H; +V,;.
The operator V,, is the sum of the Coulomb and

nuclear potentials acting between fragments 2 and 3,
whereas V? equals H-H,. For further

consideration the Hamiltonian H,, is conveniently

3
represented in the form H,;=h,, +Hy ,, + Zhj ,
j=L

where h,, is the Hamiltonian of the internal motion
in the pair 23, H,, ,, is the kinetic energy operator of
the particle 1 and the pair 23 relative motion, so that
in the momentum space H, ,, is the operator of

multiplication by the value
1

The operator G, (Z) can be represented as

=)
3

GZS(Z)ZgZI{(Z_HOLZB_Zhj] , Where gzs(z)=
j=1

= (Z —hy,, ) " is the Green's function of the pair 23. In

its turn g,,(Z) is written in the form of the formal
resonance theory expansion [10, 15]

1
o) ®3)

Ny | Dy ) = £ @y )-

The expansion (3) is written on the assumption
that the Hamiltonian h,, and h,, are invariant under

space rotations, so that the index M in Eq. (4) can be
arbitrary (-L<M <L, L is the resonance angular
momentum). In the case in question the function

®(Z) can be represented as

o(2) = (2)(2~2y), (5)

where Z, =E; —ig is the energy of the resonance

state. The explicit form of the function ,(Z) can
be found on the assumption that V,; and W are

dilatation analytic potentials. Then the function
oa(Z) has a (many-sheeted) analytic continuation

onto the part of the unphysical sheet by the law
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o(Z2)=0'(2)= <CDM (6*)

where

(10, 0) ={rU @, )=¢7"0, (&),
Im6 >0, (7
U (6) being the dilatation operator,
W (0)=U (6)WU*(0),
R°(Z)=U(8)R(Z)U*(6)=
- (2Q(6)-Q(6)(0)2(6)) Q(0)  (8)

and so on (see, for example, [19] for details).
The resonance energy Z, satisfies the equation

®’(Zz)=0 9
and
' (2)-0"(Zs)
wo(z): Z-Z, =
(10)
=1+(®,, (67)|W (0)R*(Z)R’ (Z, )W ()|, (0)).

In the physical region (Z=E+i0) the function
®(Z) can be represented in the equivalent form

m(E+i0)=A[E—eR+i$J, (11)
where the value ¢, satisfies the equation
E—g, —(®,|W|®,)—1 (e +i0)=0,
1(Z)=(D,|WR(Z)W|®D,,) (12)

and

W (6)+W (0)R*(Z)W (6)|®,, (6)), (6)

Azl_w >0,
de |,
1
GR(Z)Z%‘J\PLM (223)> (*)(Zzs)
Representing G(Z) as the sum
G(Z)=G(2)+Gx(2) (17)
and Gg(Z) in the form
1
GR(Z):%]\PLM (Zzs)>mBM (Z)’ (18)
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(Yo (Z2)[1+V76(2)]

I'(E)=-2A"ImI(E+i0). (13)

In case of the resonance far from decay thresholds the
values ¢, and E; are equal and I'=T"(E;), while in
the case of near-threshold resonance the values e,
and E; may be different and the resonance width
becomes energy dependent [10, 15, 16]

I(E)=I,+T,(E). (14)
For example, let us suppose that the resonance under
investigation decays into the two charged fragments.
In this case the threshold behavior of the width
I, (E) is described by the expression

1_,2 (E) _ Bk2|_3+le—m123 r( I_ —|—1+ in23)|2 y

where B is a constant and m,, is the Coulomb

parameter of the pair 23: m,, = %0

, 0, is the
23
charge of i-th fragment.
Substituting the expansion (3) in the second

resolvent identity (2), we find

1
o(Z,)

G(Z): R23(Zz3)+;|l{’uv| (Zzs)> <‘PLM (Zzs)| x

x[1+VZG(Z)] (15)
3

with  Z,,=Z—Hg,,— > h, and [¥,,(Z,))=
j=1

=[1+Ry(Zy)W || @y )

The equation (15) can be rearranged using the
Veselova transformation [21] to extract the long-
range part of the effective interaction potential
between the resonance and the accompanying
fragment as well as the resonant part of the total
Green's function G (Z).

From the equation (15) we have

(16)

we obtain that the kernel of the equation for the
operator By, (Z) is equal to

1

co(Zz3)

<IPLM (223)|V “ |\PLM ' (223 )>

Kum: = <\PLM (Zzs)|V23|\P|_M'(Zzs)> . (19)

The operator
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describes the static part of the effective potential
acting between the resonance and the accompanying
particle. The long-range part of this potential in the
momentum representation is written as

47Tq1(Q2 +q3) Fn (~ —')’

— A Py By (20)
|p1_p1|

where  F,.(P, B,) is the form-factor of the

unstable system

FMM.(pl,ﬁ;)=[1+<q>M|WR [z _2|01 JW|CD )j -

or after using the complex dilatation method

FMM-(Q,ﬁ;)=[1+<q>M(e*)w(e)Re( _%D

)) S

result shows that the expression

e)|c1>M (0
The last

2
MM-(ﬁl,ﬁi)%lLZB—;—;J differs from 1 by the
1

function which is proportional to Z,, —Z, —zp—;, SO
1

that the kernel (15) can be represented as

Ky = KI\C/IM' +AK s (21)
where
1

(pli pl) p1| 123|p1>—2 MM "1 (22)

Zzs - ZR -

2n,

szs being the pure Coulomb potential between the
resonance and the third particle. The operator
AKy. describes the contribution in K,,,. of the
short-range part of the effective potential and the
non-resonant part of the kernel (15) (e.g. the part of

K which does not contain the resonance
1

propagator Py (Z)=(Z,—Zz—Hy,) )-
Introducing into consideration the Coulomb
propagator Pg (Z): |

MM ' 1

Ty (lZZSﬁlr I'd°, E+i0)= Z<\V;z3(izz3)
M
1

x P (B - Za)lcw (%))

wp (EC +i0—Hg, 5 )

)> =(@,|B,, (V*

2 p2
5+ and ‘CM(K)O
2up 20,

with E€ =

_Uoc)

c ¢ \1
P (Z) = (223 —Zg—Hgg _V1,23) (23)

we can rewrite the expression for G, (Z) as

G1(2)= 30 (Za)) 57 L

Q) (Zzs)
with some operators By, (Z) of a non-resonant type,

the explicit forms of which are not essential for
further consideration.

The following transformation of the expression
(1) is based on the application of the effective charge

method for the determination \y;(IZB, r)l)> [12, 13]:

PS(Z,)By (2) (24)

WE(EB’ F31)> =

Vezs (IZ23)>

Weras( ﬁ1)> +

+G°(E +i0) (U, —V5; Uy )

W, (K, B)). (25)

In the expression (3) W;B(@s)) denotes the two-

body Coulomb wave function for fragments 2 and 3,
G°(E+i0) is the Coulomb Green’s function for

reaction products. The potential Uj,, has the form:
Uto(p) = 20l 2 (26)
n P1

where n; is the Coulomb parameter for the pair ij ;
p, is the relative coordinate of the fragment 1 and
the center of mass of the resonance b". Lastly, the

wave function ng,zs(ﬁ1)> satisfies the following

Schrodinger equation

2

(Hm,zs +Uj (pl))<ﬁ|\|’;1,zs ( p1)> - Zp_;l<§l

Ve ( ﬁ1)>
(27)

Substituting the representation (17), (18) and (24)
in the expression (1) for the reaction amplitude and
using (25), we conclude that the last term in the right
side of the expression (25) does not give the
contribution in the resonant part of the amplitude
(2). This resonant part is equal to

<\V€1,23(p1)|<q)2 |<®3|(V23 _U23)‘\PLM (EC +i0—- HoL23)>><

(28)

e ()
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By virtue of the fact that the two-body Coulomb
wave function in the momentum representation has a
strong (& -function type) singularity in the forward

TR(EZSpl' ﬁO’E+iO):zYLM (Ez )X23( 23)(90 (
M

where y,, is the resonance decay vertex function

Y2z (Kys) = J.ko23Y:M (E23)<\V;23(E23)‘<q)2 |<CD3 |(V23 _Uzs)

and

w (B, E+i0)= <\V;1,23(p1

_ZR)‘CM (ﬁ0)>
(31)

Taking into account the properties of integrals
with the two-body Coulomb Green's function in the
momentum representation [22], the non-resonant

behavior of the functions (p,|C,, (ﬁ°)> and
approximating for this reason (,|C,, (r)")> by the

proper constant CM , We can rewrite the expression

for 1,, in the form
w = [ A8, (Werss (B)|PS(E® —Z4)| B,)Coi.
¢ —<E 2n, (E° - Ey) > (32)
M T p 1
1

or in the coordinate representation

M= (27'[)% jdﬁl <\V;1,23(p1)|131><131| P (E® _ZR)|O>CM
(33)
The matrix element (p,|Ps(E® —Z,)|0) is known in
the explicit form [23]

(51| PS(ES = Zo)[0) =~ T DL+ i)W, (<2ikep,),
1 2

(34)

where W, (z) is the Whittaker function,

ks = 2n1(EC—ZR) and v:%. Using
R

the integral representation for this function and the
Nordsieck formula [14]

ikp—pp

jdﬁ<wc(ﬁ')lﬁ>e -

direction [10, 21] the expression (28) can be
simplified to

LM (Izza)Xza (kza) e

23 +|oj w (P, E +i0), (29)
o) o
. ki) -k
:4_“ye5"1“(1+in) (( o) L (35)
(2m)2 ((IZ—IZ')2 +u2)

(n is the corresponding two-body Coulomb para-
meter), we obtain after some transformations

4n kg f%n N
=—21R% e 2 (1+in)C A.
(p+kq)’ M JZ;‘ :

The values A, in (36) are defined by the relations

(36)

A= (1+in)TdX xVf(2+in,1-in; x),
A =—(1+in)TdX XV f(2+in1-in; x),
A, =—(1+in)j.dx XV (2+im,1-in; X)),

A, =(l—in).1fdx XV (1-x) f (1+in,2—in; x) (37)

f(oBix)=(e+x)" (1+ .sx)fB

, € being the small parameter in the

with n=mny, +ny,
S
+p

and €=
R

vicinity of the resonance energy E,. The
investigation of the ¢ -dependence of the values A,

1

shows that only A has the resonant behavior

A= r+ m)B(l.HV' 2-iv) 2F1(1+iv;1—in;l—82),

81+|§
(38)

where the parameter & equals n—v.
As a result the resonant part of the reaction

. _ Y
TR(kzsr)li r)o’ E +|O) = Z

M E,,—eg +i

338
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where
Al = F(1+ In) B(l}iz_lv’ 2_IV) 2F1 (1+iV;1—in;1—82)
et
(40)
and

D,, [&J —e 2T(1+iv)C,, .
Py

At this stage there are a number of points to be
made.

1. The expression (39) should be regarded as the
leading term of the reaction amplitude asymptotic
expansion in the parameter « .

2. In the case of the resonance far from decay
thresholds the parameterizations equivalent to (39)
were obtained earlier in [1 - 4] by using different
approaches: the eikonal approximation in [2]; the
Redmond - Merkuriev approximation for the three-
body Coulomb wave function in [4]; the
approximate expression for the matrix elements of

PT in the momentum representation in [3].
Nevertheless, the condition |¢|<<1 was pointed out

explicitly only in [4].
3. The parameterizations [1 - 4] are valid if the
supplementary condition |¢[<<1 is fulfilled. In this

case the function ¢(e) (40) is practically equal to 1,

but the factor ¢(e) has to be taken into account, if

len|>1, for example, in reactions with heavy ions.

The examples of the nuclear reactions, in which the
condition under discussion is fulfilled (or is
violated), are given in the Table.

4. The expression (39) describes the near-
threshold resonance formation as well. This case
was originally investigated in [7, 8, 20] under
condition |en|<<1. Redefining the values D,, , we
transform the expression (39) to the results of [7, 8]
(with the additional factor ¢(¢))

T (K5 By, By, E +i0) =
n -ig
_ [ezir(ﬂ iE_,)(Ezs _E, +i gj (I)(S):Ix

X2 (k23 ) ZYLM (st )DM
M

I'(E,)
2

X

(41)
E,—eg +i

The last term in Eq. (41) corresponds to the well-
known Migdal - Watson approximation [4, 10],
whereas the factor in the first square bracket
describes the influence of the accompanying particle
Coulomb force field on the resonance decay.

The parameters of the resonances,
which are formed in the final states of different reactions

Reacéfcrfyagﬁa;ens;;‘ame E,, MeV | ES, MeV | Er, MeV | T,MeV | [&] | n=nue+ms| v | |e(Er)
" (;.Iiis(i&g\)/;iémn 272 | 101 | 0262 | 0154 | 0-004 | 0.45:055 | 05 |2.0-10%
erékzgiiigf;q+t 272 | 148 | 5027 | 0154 | 0015 | 045+ 065 | 05 |0.2-10°
qﬁﬁﬁgngfahn 13,6 69 | 0262 | 0154 | 0:5 | 34-42 |37.2|29-10°
kagﬁ&tﬁm 2 1668 | 2059 | 557 |023:20| 02-20 |025]05-10"
%W%iggggglwm 6.8 204 | 1767 | 009 |01:27| 07:33 | 06 |41-10°
42i:fi2ﬁj' 11.3 2.1 0.89 06 | 0:03 | 02:05 |03 |63 102
%géggszi;Ha 136 | 208 | 1995 | 07 |05+32| 0:25 |07 |89-10°
SBZBIE'l'g'ég ;;ifl);ie;;a 50 538 | 1995 | 07 | o0-8 6+16 | 7.8 | 2.6- 107
%iﬁgégaixﬁigx 200 | 1876 | 1995 | 07 | 0-045| 33:39 | 35 |52-10°
The parameterization (41) leads to the following z(n,vl)Aarcctg(%(ER,EB)) ,
expression for the value [T, |": € s )| x

|, o=z = - 2 —m(N—vy
‘TR(k23p1, pO,E+|O)‘ =g ()

F(1+ in—iv, + iv2)|2 x ((E23 -E; )2 +l;j ((E23 —eR)Z +F(EZ3)J

4

339




A. V. MIKHAILOV, YU. N. PAVLENKO, V. L. SHABLOV ET AL.

x Z YLM (k23)YIjM'(k23)DM DIT/I t (42)
M,M"

The Coulomb parameter v is represented in (42)
as the sum v=v, —iv, with v, >0. For resonances
far from the decay thresholds the value v, is
negligibly small.

The parameterization predicts the following
peculiarities:

1. At n—v, >0 the resonance position is shifted
to the lower energies E,,. If resonance is far from the
decay thresholds the resonance curve is broadened [1,
4], while in the case of near-threshold resonance the
narrowing effect can be observed [7, 8].

2. If n—v, <0, the position of the resonance is
shifted in the direction of higher energies E,; and is
always broadened [4, 7, 8].

3. In all cases the resonance curve is asymmetric.

4. If the parameter v, is not small, the resonance
curve is additionally broadened.

5. In case of the near-threshold resonances the
decay branching ratio change is possible too [4, 11].

The branching ratio for the decay of the near-
threshold resonance 'Li*(7.45 MeV)

In this section the properties of the near-threshold
resonance ‘Li’(7.45MeV) are investigated. This
resonance is formed in the reaction

o+ Li—a + 'Li—o + °Li + n (43)

—ot+ott

at E, =27.2 MeV. The scattered a-particles were
detected at 0, =44°. We can use the amplitude
parameterization (42) since the parameter ¢ is small
in this reaction (en ~ g ~ 107%).

For these kinematical conditions the resulting
Coulomb parameters &=m—v for both reaction

final channels are quite small |

(|&,| ~0.04,|¢,| ~0.15), so the change of the reso-

nance parameters is not pronounced (Fig. 1).

The more pronounced effect was observed under
investigation of the decay branching ratio. The
probability of the specified decay channel was
defined by the relation [11, 17]

O.

— 1
P= .
Gl+62

(44)
In Eq. (44) o, denotes the result of the integration
of the double differential cross section over the energy

range, which corresponds to the resonant peak:

(45)

et I
¢ 4.6 4.8 5

Eaot, MeV
Fig. 1. The shape of the resonance 'Li"(7.45 MeV),
decaying into the channel o + t in the reaction
o+ 'Li—a+ Li*—o +a+t at E,=27.2 MeV. The
calculations on the base of the Migdal - Watson
model and the parameterization (42) are shown by
dashed and solid line, respectively.

It should be pointed out that in case of the
resonances far from the decay thresholds the relation
(44) is equal to T'i/Tw as in the case, when the
accompanying particle does not influence on the
resonance decay [4].

The double differential cross section is defined by the relation

d’c,  32n'n
dE dQ, P,

The integration over the direction of the !

momentum k,, can be performed by the following
way [7]. By introducing the spin variables

1 3 . R
L(E, Eps) (M) [ A% [T (Ko, By, E +10)[ .

(46)

(&) [x(kys)|”

(J“=g (R,,), L=1, Szg - the spin of the

resonant system) and summing over the final spins
we can rewrite the expression (42) as

. L2
T (K Py, Boy E+i0)| = ;
[(Eza —&g)

x DM Dlt/l 'YLM (EZB)Y:M ! (lZZS )'

340
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where

£(0)= 2“‘3

2(Er —Ey)
1exp{2§ arcctg( T ﬂ (48)

The function f (&) depends on the angle 6,,,

between the momenta k,, and p,, so we have

f(§)=22|2+1

(49)

Owing to the properties of the spherical
harmonics only even values of | give the
contribution in the integral (46). In the reaction
under investigation (43) (E. =27.2 MeV, 0, = 44°)

the value f, dominates (f ~107°*f,, 1>1),
therefore

f lv(k.)f
J‘dQ23 |-|—|2 _ 0|X( 23)|

I (Ey)

(CERE

The last expression shows that the influence of
the accompanying a-particle Coulomb field is
described by the unique function f;.

The vertex functions 7y;(k,;) and the energy-

ZI ul - (50)
Rl

dependent width T, (E,;) were chosen in
accordance with the formal resonance theory
[10,15,16], in particular, y(k,)~ky and
T, (Ky) ~ K™ (L=1).
0.600 T T T
0585 T
— 0,580 - -
E' 0585 b
0580 - -
0575 ] g {0 {5 20

N
Fig. 2. The probability of decay of 'Li*(7.45 MeV)
into the channel n + ®Li in the reaction "Li(a, a)’Li*
at E, = 27.2 MeV and 0, = 44° as a function of the
parameter N = AE/T.

The probability of decay depends on the interval
of integration width AE (Fig. 2): to obtain the
accuracy of 5% this width should be about 10-T.
Usually the integration interval of experimental
resonance peaks does not exceed 5-T'. Therefore, the

f,R (Cos(el )= an Y ( pl)le (kzs)-

probability decay into the n+°Li channel
P(n + ®Li)meor = 0.58 = 0.06 can be used as the result
of calculations for comparison with experimental
data. The above error covers all possible values of
this quantity calculated for the range of integration
width up to AE>20-T. The calculated decay
probability agrees well with the experimental value
P(n + ®Li)exp = 0.56 £ 0.03, which was obtained in
[17] for 'Li"(7.45 MeV) resonance excited in the
reaction under investigation. The measurements in
[17] were performed at E, = 27.2 MeV and 0, = 44°
for all possible decay angles of ®Li (8eLi and @eLi)
using the position-sensitive detector and the method
proposed in [11].

At the same time, both the experimental and
theoretical results differ noticeably from the relation
I'(n + °Li)/Tt = 0.77 and on/ct = 0.71 [18], where o,
and oy are the n +°Li elastic and total cross sections
at the resonance energy. The calculation of the decay
probability for the binary reaction by analogy with
(45) gives P(n + °Li) = 0.68 instead of the value 0.71.

The performed calculations also showed that the
value P(n + °Li) strongly depends on the incident a-
particle energy (Fig.3). At high energies the
influence of the accompanying o-particle on the
resonance decay becomes negligible, so that the
probability P(n + ®Li) is the same as in the isolated
decay case.

0,75 T T T T T

0,70

0,65

P(n+5Li)

0,50

0.55 |-

0,50 1 1 1 1 1 1 1
24 26 28 30 32 34 36 38

Eq, MeV
Fig. 3. The dependence of the probability P(n + °Li)
in the reaction "Li(a, o)’Li* at 6, = 44° on the energy
of the incident o-particle: the interval of the
integration width AE is equal to 5-T (solid line) and
10-T (dashed line), ® — experimental data from [17].

The dependence of the probability of the decay
"Li"(7.45MeV) into the channel n + °Li at different
detecting angles of the a-particle was calculated too
(Fig. 4). Unfortunately, there are no more data in
addition to those obtained in [17], which could
confirm predicted energy and angular dependences
of the decay probability into different channels for
"Li"(7.45 MeV) resonance.

341



A. V. MIKHAILOV, YU. N. PAVLENKO, V. L. SHABLOV ET AL.

1,0

)

0,9
0,8

0,7

)

P(n+°Li)

0,6

0,5

0,4

0,3 I I I I I I I I
0 10 20 30 40 50 60 70 80 90

ea,deg
Fig. 4. The angular dependence of the decay
probability P(n + °Li) in the reaction "Li(a, a)’Li* at
E.=27.2MeV: AE is equal to 10T, e -—
experimental data from [17].

Conclusions

Various properties of decay of two-fragment
nuclear resonances that are formed in three particle
reactions are predicted by modified theory that takes
into account the Coulomb interaction in the exit

channel of such reactions. Some of them have
experimental confirmation, while others require
further experimental studies, especially in the case
of near-threshold resonances, for which the change
of decay branching ratio is possible. So far this
phenomenon was observed only for near-threshold
resonance ‘Li"(7.45 MeV) at the decay into n + °Li
channel in three-particle reaction "Li(a, a®Li)n.

The regularities of the non-isolated resonance
decay established in this work can be applied both to
the interpretation of the experimental data and to the
recovery of the resonance parameters using the three
and four particle reaction final state data. The
parameterization (41) can be useful to plan new
experiments and to predict new effects in non-
isolated decay of unstable quantum systems.

It should be expected that the effect of the
branching ratio change discovered in the non-
isolated “Li"(7.45 MeV) decay could take place in
other reactions with the formation of light nuclei
resonant states, for example, °He’(16.75 MeV),
’Li(16.6 MeV), ®Be(22.2 MeV). The investigation of
this problem is now in progress.
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A. B. Muxaiinos?, 0. M. llaBaenko?, B. JI. lllaéaos!, A. B. Crenaniox?, I. A. Tupac!

Y Obuincoruti incmumym amomnoi enepzemuxu,
Hayionanvuuii oocnionuysxuil adepru yHisepcumem MIDI, Obuincok, Pocis
2 Incmumym adepuux docnioncens HAH Ypainu, Kuis

E®EKTHU KYJIOHIBCBKOI B3AEMO/III B BATATOUYACTUHKOBUX SAJIEPHUX PEAKIIAX
3 YTBOPEHHSM JBO®PAI'MEHTHUX PE3OHAHCIB

Po3pobiieHo MonmdikoBaHy TEOpiro B3aeMO/ii B KIHIIEBOMY CTaHi, 110 BPaXOBY€ KYJIOHIBCHKY B3a€MO/III0 IPOIYKTIB
po3nany qBogparMeHTHHX SIIEPHUX PE30HAHCIB i3 CYITyTHIM IPOIYKTOM peakilii, BKIIOYAIOYH BHITAIOK OLIAITOPOrOBHX
pe3oHaHCiB. JloCHiKEHO TakoXK 3MiHY CIIBBiTHOIICHHS TUIOK po3mamy i OUISIIOpOTOBOTO  PE30HAHCY
Li"(Ex = 7,45 MeB), mo 36ymxyeThes B peakmii 'Li(a, a)’Li" npu E, = 27,2 MeB.

Kniouosi crnosa: TpUUaCTHHKOBI SIEPHI peakiii, sSAepHI PE30HAHCH, TEOpPis PE30HAHCIB, KYJIOHIBChKA B3aEMOMIS,
O1IAMOPOTOBi Pe30HAHCH, KaHAJH PO3IALY, CIIiBBiTHOIICHHS T1JIOK PO3Iady.

A. B. Muxaiinos?, IO. H. ITapiaenxo?, B. JI. Illaduos’, A. B. Crenamox?, . A. Teipac!

Y Obnuncruii uncmumym amommoii snepzemuxu,
Hayuonanvuouil uccnedosamenvcruil sdeprulil ynugepcumem MUDOU, Obnunck, Poccus
2 Unemumym sidepnwix uccredosanuii HAH Ykpaunvl, Kuee

3PPEKTbHI KYJIOHOBCKOI'O B3AMMOJENCTBUSI B MHOIOYACTUYHBIX
AAEPHBIX PEAKIIUAX C OBPA3OBAHUMEM JIBYX®PATI'MEHTHBIX PE3OHAHCOB

Pazpaborana MomuduUUpOBaHHAs TEOPHsS B3aUMOJCHCTBHS B KOHEYHOM COCTOSHMM, KOTOpasi Y4YUTHIBAET
KYJIOHOBCKOE B3aMMOJICHCTBHE IPOIYKTOB paclaga JIBYX(pParMeHTHBIX SIACPHBIX PE30HAHCOB C COIMYTCTBYIONIMM
MIPOYKTOM PEaKIMy, BKIIOUYasl CIydail OKOJIOITIOPOTOBBIX PE30HAHCOB. MccienoBaHo Takke N3MEHEHHE COOTHOIICHHMS
BepBell pacnazia Juis OKOJIONOporoeoro pezonanca 'Li"(Ex = 7,45 MoB), Bo3byxknaemoro B peakimu 'Li(a, o)'Li" mpu
E. = 27,2 MaB.

Knwouesvie cnosa: TpexX4acTUUHbBIEC SIEpHbIC PEaKLH, SACPHBIE PE3OHAHCHI, TEOPHS PE30HAHCOB, KYJIOHOBCKOE
B3aMOJICHCTBIE, OKOJIOTIOPOTOBBIE PE30HAHCHI, KaHAIIBI paciaa, COOTHOILICHHE BEeTBel pacnala.
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