УДК 539.163

= ЯДЕРНА ФІЗИКА =

А. П. Лашко, Т. М. Лашко

Інститут ядерних досліджень НАН України, Київ

СТРУКТУРНО-ЯДЕРНІ ЕФЕКТИ У ВНУТРІШНІЙ КОНВЕРСІЇ *М*1-ПЕРЕХОДІВ З ЕНЕРГІЯМИ 114 ТА 138 кеВ В ¹⁷⁵Lu

За допомогою магнітного β-спектрометра типу $\pi\sqrt{2}$ та двох коаксіальних НРGе-детекторів поміряно інтенсивності ліній електронів внутрішньої конверсії та γ-променів із розпаду ¹⁷⁵Нf (T_{1/2} = 70 діб). Визначено коефіцієнти внутрішньої конверсії $\alpha_{\rm K}$ та параметри проникнення λ для ротаційних магнітних дипольних переходів γ114 і γ138 кеВ в ¹⁷⁵Lu.

Ключові слова: радіоактивність, ¹⁷⁵Hf, HPGe-детектори, магнітний спектрометр, інтенсивності γ-променів, інтенсивності ліній електронів внутрішньої конверсії, внутрішня конверсія, параметр проникнення.

Вступ

Сучасна теорія внутрішньої конверсії претендує на точність розрахунків коефіцієнтів внутрішньої конверсії (КВК) близько 1 % [1]. Цього вдається досягти, оскільки КВК слабко залежать від деталей ядерної структури. При теоретичних розрахунках структурно-ядерні ефекти або враховуються наближено (як, наприклад, в таблицях Банд і Тржасковської [2]), або ігноруються зовсім (таблиці Хагера і Зельцера [3] та Розеля, Фріза, Альдера і Паулі [4]). Проте такий підхід виправдовує себе лише в тому випадку, коли у-випромінювання цього переходу не є значно загальмованим у порівнянні з оцінкою ймовірності одночастинкового переходу. Якщо ж перехід загальмований, то тоді значення КВК може суттєво залежати від структури ядра. У цьому випадку в теоретичні КВК потрібно внести поправки відповідно до робіт [5 - 7].

Величина таких поправок характеризується параметром проникнення λ . Параметр проникнення λ визначений в роботі [8] як відношення безрозмірних матричних елементів проникнення і γ -випромінювання. Внутрішньоядерний конверсійний матричний елемент як виглядом підінтегральних функцій, так і межами інтегрування відрізняється від радіаційного матричного елемента. Іноді це призводить до різних правил відбору для матричних елементів γ -випромінювання і внутрішньоядерної конверсії [9].

Загальмованість γ-переходу означає, що радіаційний матричний елемент значно зменшений. У цьому випадку внутрішньоядерна конверсія може стати суттєвою і визначати собою величину КВК. При цьому, безумовно, необхідно, щоб правила відбору, відповідальні за зменшення ймовірності γ-випромінювання, не впливали (або впливали несуттєво) на ймовірність внутрішньоядерної конверсії. Дійсно, у деяких випадках правила відбору для матричних елементів γ-випромінювання і внутрішньоядерної конверсії виявляються різними [10], а КВК аномальними. Зокрема, це випадки *l*-заборони та заборони за асимптотичними квантовими числами в деформованих ядрах. Предмет наших досліджень – структурно-ядерні ефекти у внутрішній конверсії ротаційних *M*1-переходів, зумовлені збігом гіромагнітних відношень остова та індивідуальних частинок.

«Випадкова» заборона ротаційних *М*1-переходів у деформованих ядрах

В узагальненій моделі ядра приведена ймовірність переходу M1 між рівнями ротаційної смуги (для $K \neq 1/2$) визначається формулою [11]

$$B(M1, I+1 \to I) =$$
(1)
$$= \frac{3}{4\pi} \left(\frac{e\hbar}{2mc}\right)^2 (g_K - g_R)^2 \frac{K^2(I+1+K)(I+1-K)}{(I+1)(2I+3)}.$$

Гіромагнітні відношення для внутрішнього і колективного рухів (g_K та g_R), які входять у формулу (1), пов'язані з магнітним моментом μ_0 основного стану смуги

$$\mu_0 = \frac{I_0}{I_0 + 1} (g_K I_0 + g_R).$$
⁽²⁾

Вони можуть бути обчислені за допомогою експериментально виміряних значень B(M1) і μ_0 .

У деяких випадках, гіромагнітні відношення остова g_R і частинки поза ним g_K виявляються близькими за величиною. Це призводить до «випадкової» заборони M1-переходів у деформованих ядрах.

Експериментальні значення g_R для ядер із непарним A в середині області деформації концентруються поблизу величини ~ 0,3, на краях області наближуються до оцінки узагальненої моделі

© А. П. Лашко, Т. М. Лашко, 2015

 $g_R \cong Z/A$, яка ґрунтується на припущені про рух рівномірно зарядженої ядерної речовини [12]. У той же час g_K -фактор змінюється в більш широких межах і є характерною величиною, яку можна використати для ідентифікації конфігурації ядерних станів [13]. Аналізуючи дані магнітних g_K -факторів для непарних деформованих ядер з [14], ми прийшли до висновку [15], що «випадкова» заборона *M*1-переходів може спостерігатись у ротаційних смугах, побудованих як на одночастинкових станах непарного протона — 3/2[402] і 7/2[404], так і на одночастинкових станах непарного нейтрона – 5/2[523] і 7/2[514]. Конфігурація π 7/2[404] приписана, зокрема, основному стану ¹⁷⁵Lu, а переходи γ114 та γ138 кеВ належать до його ротаційної смуги. Фактори заборони *M*1-випромінювання відносно оцінок Вайскопфа за даними [16] становлять відповідно $F_w(\gamma 114) = 28, 2 \pm \pm 1, 1$ та $F_w(\gamma 138) = 15, 9 \pm 0, 8$.

Характеристики переходу $\gamma 114$ кеВ можна досліджувати в радіоактивному розпаді як ¹⁷⁵Yb ($T_{1/2} = 4,2$ діб), так і ¹⁷⁵Hf ($T_{1/2} = 70$ діб) (рис. 1). Перехід з енергією 138 кеВ збуджується лише при β -розпаді ¹⁷⁵Yb.

Рис. 1. Фрагмент схеми розпаду ¹⁷⁵Yb та ¹⁷⁵Hf.

Параметр проникнення λ для переходу γ 138 кеВ не визначався взагалі, а для переходу γ 114 кеВ дані суперечливі [17 - 22]. Оскільки очікуваний вклад у КВК, зумовлений структурноядерними ефектами, згідно з теоретичними оцінками не перевищуватиме кількох відсотків [23], необхідні прецизійні вимірювання КВК для цих переходів. Ми проаналізували всі доступні на сьогоднішній день експериментальні дані [16] з внутрішньої конверсії та кутових кореляцій, а також провели вимірювання КВК на *К*-оболонці ¹⁷⁵Lu для переходу γ 114 кеВ.

Експеримент

Оскільки при визначенні КВК шляхом прямого співставлення інтенсивностей електронів внутрішньої конверсії (ЕВК) і γ-променів дуже важко досягти необхідної точності, ми визначаємо їх наступним чином. У спектрах ЕВК і γ-променів вибирається перехід добре відомої мультипольності, значення КВК якого використовуються як нормуючі. Помірявши відношення інтенсивностей ЕВК і γ-променів цих двох переходів, абсолютні значення КВК можна визначити за формулою

$$\alpha_i = \alpha_j \frac{I_e^i I_\gamma^j}{I_e^j I_\gamma^i},\tag{3}$$

де $I_e^{i,j}$, $I_{\gamma}^{i,j}$ – експериментальні значення інтен-сивностей ЕВК і γ -променів відповідних переходів; $\alpha_{i,j}$ – абсолютні значення їхніх КВК.

Таким переходом з добре відомим КВК ($\alpha_{\rm K} = 0,114 \pm 0,001$ [24]) є M1+E2-перехід з енергією 343 кеВ, який з високою інтенсивністю збуджується при розпаді ¹⁷⁵Hf.

Джерела випромінювання ¹⁷⁵Нf були отримані в реакції (n, γ) на дослідницькому реакторі ІЯД НАН України. Використовували гафнієві мішені як з природним вмістом ізотопів, так і збагачені до 13,9 % ¹⁷⁴Hf.

Вимірювання γ-спектрів проводили на γ-спектрометрі, що складався з двох горизонтальних коаксіальних детекторів із надчистого германію (GEM-40195 та GMX-30190 з роздільною здатністю 1,73 і 1,89 кеВ на лінії γ 1332 ⁶⁰Co відповідно) та багатоканального буфера 919 SPECTRUM MASTER фірми ORTEC. Було виконано ретельне градуювання детекторів по ефективності реєстрації за допомогою еталонних спектрометричних джерел γ-випромінювання ⁶⁰Co, ¹³³Ba, ¹³⁷Cs, ¹⁵²Eu, ²²⁸Th та ²⁴¹Am в діапазоні енергій від 26 до 1620 кеВ. Форма кривої ефективності реєстрації добре описується функцією Кемпбела [25], похибка градуювання для обох детекторів не перевищує 2 % (при Е γ > 100 кеВ).

Щоб звести до мінімуму можливі систематичні похибки, вимірювання проводили серіями на детекторах різних типів, при різних коефіцієнтах підсилення та різних ширинах каналу амплітудно-цифрового перетворювача (8192 і 16384 рівня квантування вхідного сигналу). Усього було виконано 38 серій вимірювань.

Спектри ЕВК на \bar{K} -оболонках ¹⁷⁵Lu вивчали за допомогою магнітного β -спектрометра типу $\pi\sqrt{2}$ із залізним ярмом і радіусом рівноважної орбіти 50 см. Роздільна здатність спектрометра 0,03 % по імпульсу при тілесному куті 0,07 % від 4 π . Характеристики спектрометра дають змогу виміряти відносні інтенсивності конверсійних ліній з точністю не гірше 1 % [26].

Обробку γ-спектрів проводили за програмою WinSpectrum [27]. Спектри було проаналізовано також за періодом напіврозпаду, щоб виключити можливі впливи домішкових радіонуклідів. Остаточні значення інтенсивностей γ-ліній визначали як зважене середнє з 38 серій вимірювань. В якості невизначеності експериментальних значень використано або вагову похибку, або похибку розкиду, залежно від того, яка з них була більшою.

Отримані нами дані добре узгоджуються з результатами інших експериментальних робіт. Застосування різних типів детекторів дало змогу покращити точність визначення відносних інтенсивностей γ -променів. Повністю результати вимірювань опубліковано в роботі [28]. Відносні інтенсивності γ -променів із розпаду ¹⁷⁵Нf, які ми використовуємо, такі: $I_{\gamma}(114)/I_{\gamma}(343) = 0,00346 \pm \pm 0,00020.$

Обробку спектрів ЕВК проводили за розробленими нами програмами [26]. Відношення інтенсивностей ліній ЕВК на К-оболонці ¹⁷⁵Lu для вищеназваних переходів становить $I_{\rm K}(114)/I_{\rm K}(343) = 0,067 \pm 0,004$. За формулою (3) визначаємо КВК для переходу з енергією 114 кеВ: $\alpha_{\rm K}(114) = 2,20 \pm 0,19$.

Аналіз експериментальних даних із внутрішньої конверсії для γ-переходів з енергіями 114 та 138 кеВ в ¹⁷⁵Lu

Вісім найбільш точних експериментальних значень КВК на *К*-оболонці ¹⁷⁵Lu для переходу з енергією 114 кеВ наведено в табл. 1. В останньому стовпчику таблиці наведено також і розраховане нами середнє зважене значення $\alpha_{\rm K}(114)$.

Таолиця 1. Експериментальні значення КВК на К-оболонці "Ци для переходу з енергією 114 кев
--

Робота	[29]	[30]	[31]	[32]	[32]	[19]	[22]	Наша робота	Середнє зважене
α _K (114)	1,73(21)	2,07(6)	1,94(20)	1,80(8)*	1,90(8)*	1,82(15)	1,86(6)	2,20(19)	1,94(4)

* Наведено два значення $\alpha_{K}(114)$.

Згідно з рекомендаціями Б. С. Джелепова [33] результати вимірювань порівнюють між собою для з'ясування узгодженості вагових похибок (S_B) з похибками розкиду (S_p). Якщо S_p/S_B < 2, то вимірювання вважаються узгодженими, а якщо S_p/S_B > 2, то має місце протиріччя, яке може бути зумовлене, зокрема, недооцінкою похибок. У нашому випадку S_p/S_B \approx 1. Тому ми можемо використати при аналізі аномалій в КВК середнє зважене значення $\alpha_K(114)$.

У ряді робіт [22, 34, 35] наводяться також значення КВК на *L*-і *M*-оболонках ¹⁷⁵Lu. Проте точ-

ність їхнього визначення значно поступається відношенням КВК на *L*-підоболонках атома. Тому при аналізі аномалій в КВК ми використали середні зважені значення α_{L1}/α_{L2} та α_{L1}/α_{L3} з табл. 2.

Експериментальні дані з внутрішньої конверсії для переходу $\gamma 138$ кеВ в ¹⁷⁵Lu значно скромніші. У роботі [30] поміряно КВК на *К*-оболонці ¹⁷⁵Lu $\alpha_{\rm K}(138) = 1,19 \pm 0,08$, авторами [38] та [39] - відношення КВК на *К*- та *L*-підоболонках $\alpha_{\rm K}/\alpha_{\rm L} = 4,3 \pm \pm 0,4$ і $\alpha_{\rm L1}/\alpha_{\rm L2}/\alpha_{\rm L3} = 1/(0,29 \pm 0,02)/(0,22 \pm 0,03)$ відповідно.

Робота	[21]	[36]	[37]	Середнє зважене
α_{L1}/α_{L2}	2,50(13)	2,41(5)	2,46(3)	2,45(3)
α_{L1}/α_{L3}	3,45(24)	3,23(5)	3,24(3)	3,24(3)

Таблиця 2. Експериментальні значення відношень КВК на *L*-підоболонках ¹⁷⁵Lu для переходу з енергією 114 кеВ

Ще в роботі [39] наводиться відношення інтенсивностей ліній електронів внутрішньої конверсії на *К*-оболонці ¹⁷⁵Lu для переходів γ 145 та γ 138 кеВ: $I_{\rm K}(145)/I_{\rm K}(138) = 0,248 \pm 0,011.$

Перехід з енергією 145 кеВ згідно з [40] є чистим *E*1-переходом. Теоретичне значення $\alpha_{\rm K}(145) =$ = 0,110 разом із даними про відносні інтенсивності γ-променів ¹⁷⁵Yb з компіляції [40] було використано нами для розрахунку КВК на *K*-оболонці ¹⁷⁵Lu для переходу γ138 кеВ за формулою (3): $\alpha_{\rm K}(138) = 1,26 \pm 0,10$.

При аналізі аномалій у КВК ми використали середнє зважене значення $\alpha_{\rm K}(138) = 1,22 \pm 0,06$ та наведені вище відношення КВК на *K*- та *L*-підоболонках ¹⁷⁵Lu.

Методика аналізу аномалій в КВК змішаних (*M*1 + *E*2)-переходів

Ефект проникнення у випадку переходів магнітної мультипольності можна описати одним ядерним параметром λ [5]. Методику аналізу аномалій у КВК переходів змішаної мультипольності детально описано в роботі [41]. Параметр проникнення λ і параметр змішування δ знаходять за розв'язками системи рівнянь для абсолютних або відносних КВК. Для будь-якої *i*-підоболонки змішаного (*M*1 + *E*2)-переходу експериментальні КВК, з урахуванням ефекту проникнення в *M*1-компоненті, мають вигляд [6]

$$\alpha_{i,\exp} = \frac{\alpha_i(M1)(1 + B_1^i \lambda + B_2^i \lambda^2) + \delta^2 \alpha_i(E2)}{1 + \delta^2}, \quad (4)$$

де B_1^i та B_2^i – параметри, що залежать тільки від хвильових функцій електрона й табульовані в [6]; $\alpha_i(M1)$ та $\alpha_i(E2)$ – теоретичні значення КВК на *i*-підоболонці для M1- та E2-переходів відповідно; $\alpha_{i,exp}$ – експериментальні значення КВК на *i*-підоболонці. E2-компонент у переходах такого типу прискорений у порівнянні з оцінкою ймовірності одночастинкового переходу. Тому аномалій у КВК, зумовлених ефектом проникнення, у цьому компоненті бути не може. Такий же вираз можна записати і для відношень КВК.

Як і в [15], система рівнянь для абсолютних та відносних КВК розв'язувалась шляхом мінімізації функціонала за методом найменших квадратів:

$$\chi^{2}_{\min} = \left(\frac{\alpha_{i,\exp} - \alpha_{i}(\lambda,\delta)}{\Delta \alpha_{i,\exp}}\right)^{2} + \sum_{i,j} \left(\frac{(\alpha_{i} / \alpha_{j})_{\exp} - \alpha_{i}(\lambda,\delta) / \alpha_{j}(\lambda,\delta)}{\Delta (\alpha_{i} / \alpha_{j})_{\exp}}\right)^{2}, \quad (5)$$

де $\alpha_{i,\exp}$, $\Delta \alpha_{i,\exp}$, $(\alpha_i / \alpha_j)_{\exp}$, $\Delta (\alpha_i / \alpha_j)_{\exp}$ – експериментальні значення КВК і відношень КВК на *i*та *j*-підоболонках зі своїми похибками; $\alpha_i(\lambda,\delta)$, $\alpha_j(\lambda,\delta)$ та $\alpha_i(\lambda,\delta)/\alpha_j(\lambda,\delta)$ - теоретичні значення КВК і відношень КВК на *i*- та *j*-підоболонках, що залежать від значень λ та δ , які є параметрами підгонки за методом χ^2_{min} .

Щоб уникнути локальних мінімумів, початкові значення λ і б знаходили з розв'язків системи рівнянь графічним методом. Теоретичні значення КВК отримано за допомогою інтерполяції табличних значень з роботи [3], а електронних параметрів – з роботи [6].

Стандартні похибки визначаються за допомогою співвідношення

$$\chi^2(\lambda_{opt} \pm \Delta \lambda) = \chi^2_{\min} + 1, \qquad (6)$$

де λ_{opt} - оптимальне значення параметра λ , що мінімізує величину χ^2 . При цьому всі інші параметри фіксовані і відповідають своїм оптимальним значенням.

Аналогічно визначаються й похибки Δδ.

Результати та обговорення

Результати розрахунків для переходу з енергією 114 кеВ в ¹⁷⁵Lu разом з даними авторів інших робіт наведено в табл. 3.

Таблиця 3. Експериментальні значення параметра проникнення λ_{exp} для переходу з енергією 114 кеВ в ¹⁷⁵Lu

Робота	[17]	[18]	[19]	[19]	[20]	[21]	[22]	Наша робота
λ_{exp}	8,4(25)	-3(1)	3,3(41)*	3,8(41)*	≈2	-3(1)	1,60(14)	-1,5(3)

* При δ²(*E*2/*M*1) із різних робіт.

Отримане нами значення параметра проникнення λ узгоджується з результатами досліджень [18, 21], але суперечить даним робіт [17] та [22]. При детальному аналізі стає зрозумілою причина таких розбіжностей. Для пошуку аномалій в КВК змішаних (M1 + E2)-переходів дуже важливо мати прецизійні дані не тільки про відносні, але й про абсолютні КВК на різних підоболонках атома або ж залучати додатково дані кутових кореляцій. Лише за такої умови функціонал (5) буде мати чіткий мінімум [5].

У [17] для знаходження параметра проникнення λ було взято експериментальні відношення КВК на *L*-підоболонках ¹⁷⁵Lu з роботи [37]. Отриманий при підгонці параметр змішування δ²(*E*2/*M*1) протирічить даним кутових кореляцій (див. компіляцію [42]).

М. А. Лістенгартеном [18] були використані експериментальні відношення КВК на K-, L- і *М*-підоболонках ¹⁷⁵Lu з роботи [36], авторами [19] - власне значення $\alpha_{\rm K}$ при $\delta(E2/M1)$ з різних робіт. У роботі [20] наведена оцінка можливої величини параметра проникнення, виходячи з власного $\delta(E2/M1)$ та конверсійних даних з [36].

А. Г. Троїцька зі співавторами [21] брала власні експериментальні відношення КВК на L-підоболонках ¹⁷⁵Lu, а в роботі [21] наводиться середня величина λ з отриманого ними ж α_к при $\delta(E2/M1)$ із різних робіт.

змішування Наше значення параметра $|\delta(E2/M1)| = 0,475 \pm 0,002$ не протирічить даним кутових кореляцій [42] і дуже близьке до найбільш точного значення $\delta(E2/M1) = 0.465 \pm 0.005$ з роботи [20].

Для переходу з енергією 138 кеВ в ¹⁷⁵Lu було знайдено параметр проникнення $\lambda_{exp} = -(3, 4 \pm 1, 4)$ та параметр змішування $|\delta(E2/M1)| = 0.48 \pm 0.02$. Величину параметра проникнення λ_{exp} визначено нами вперше, величина параметра змішування добре узгоджується з даними [42].

Одним із інструментів систематики даних по

СПИСОК ЛІТЕРАТУРИ

- 1. Raman S., Nestor Jr. C.W., Ichihara A., Trzhaskovskaya M.B. How good are the internal conversion coefficients now? // Phys. Rev. C. - 2002. - Vol. 66. -044312.
- 2. Банд И.М., Тржасковская М.Б. Таблицы коэффициентов внутренней конверсии гамма-лучей на К-, Lи *М*-оболочках 10 ≤ Z ≤ 104. - Л.: ЛИЯФ, 1978. -179 c
- 3. Hager R.S., Seltzer E.C. Internal conversion tables. Part I: K-, L-, M-shell conversion coefficients for Z = 30to Z = 103 // Nucl. Data Tables A. - 1968. - Vol. 4. -P.1 - 235.

параметрам проникнення є пошук емпіричної залежності λ (за абсолютною величиною) від величини фактора заборони по Вайскопфу (F_W). У роботі [41] неодноразово підкреслювалося, що такі залежності потрібно будувати не лише окремо для конкретних типів переходів, але й окремо для різних видів заборони у-випромінювання. Необхідні дані для такого аналізу по «випадково» заборонених ротаційних М1-переходах у деформованих ядрах наведено на рис. 2.

Рис. 2. Експериментальні значення ядерного параметра проникнення λ (за абсолютною величиною) залежно від фактора заборони по Вайскопфу (F_W) для ротаційних М1-переходів у деформованих ядрах: $1 - {}^{175}Lu$ (138); $2 - {}^{175}Lu$ (114); $3 - {}^{191}Ir$ (129); $4 - {}^{175}Lu$ (129); $4 - {}^{191}Ir$ (129); 4 -¹⁶³Ег (84); 5 – ¹⁷⁷Нf (113); у дужках – енергія пере-

У межах експериментальних похибок залежність величини параметра проникнення λ від величини фактора заборони по Вайскопфу не спостерігається. Можна лише стверджувати, що при факторах заборони *F*_W ≤ 2300 величина параметра проникнення λ за абсолютною величиною не перевищить 5.

ходу, кеВ.

- 4. Rösel F., Fries H.M., Alder K., Pauli H.C. Internal conversion coefficients for all atomic shells // Atom. Data Nucl. Data Tables. - 1978. - Vol. 21. - P. 91 - 514.
- 5. Банд И.М., Листенгартен М.А., Фересин А.П. Аномалии в коэффициентах внутренней конверсии гамма-лучей. - Л.: Наука, 1976. - 175 с.
- 6. Hager R.S., Seltzer E.C. Internal conversion tables. Part III: Coefficients for the analysis of penetration effects in internal conversion and E0 internal conversion // Nucl. Data Tables A. - 1969. - Vol. 6. - P. 1 - 127.
- 7. Pauli H.C. Finite nuclear size effects in internal conversion // Helv. Phys. Acta. - 1967. - Vol. 40. - P. 713 -744.

- Church E.L., Weneser J. Effect of the finite nuclear size on internal conversion // Phys. Rev. - 1956. - Vol. 104.
 - P. 1382 - 1386.
- Войханский М.Е., Листенгартен М.А. О правилах отбора при конверсионных переходах // Изв. АН СССР. Сер. физ. - 1959. - Т. 23. - С. 238 - 243.
- Листенгартен М.А. Внутренняя конверсия гаммалучей // Гамма-лучи / Под ред. Л. А. Слива - М., Л.: Изд-во АН СССР, 1961. - С. 271 - 507.
- 11. Войханский М.Е. Радиационные переходы в обобщенной модели ядра // Там же. С. 44 84.
- 12. Берлович Э.Е. Экспериментальные исследования радиационных переходов в ядрах // Там же. С. 85 270.
- 13. Бор О., Моттельсон Б. Структура атомного ядра / Пер. с англ.; Под ред. Л.А. Слива М.: Мир, 1977.
 Т. 2. 664 с.
- 14. Гродзинс Л. Магнитные дипольные моменты возбужденных состояний ядер // УФН. - 1971. - Т. 103. - С. 37 - 86.
- Кирищук В.І., Лашко А.П., Лашко Т.М. Аномалії в коефіцієнтах внутрішньої конверсії загальмованих ротаційних гамма-переходів // УФЖ. - 2012. - Т. 57. - С. 1097 - 1107.
- 16. *Evaluated* Nuclear Structure Data File (National Nuclear Data Center, Brookhaven National Laboratory) [http://www.nndc.bnl.gov].
- Protop C. On the calculation of the penetration factor for the internal conversion of magnetic dipole transitions in deformed nuclei // Rev. Roum. Phys. - 1971. -Vol. 16. - P. 951 - 959.
- 18. Листенгартен М.А. Актуальные задачи физики, связанные с исследованием электронов внутренней конверсии с помощью магнитных спектрометров // Призменные бета-спектрометры и их применение. - Вильнюс: Изд-во Ин-та физики АН ЛитССР, 1971. - С. 169 - 192.
- Constantinescu F., Enulescu Al., Gelberg A. et al. Internal conversion of 113.8 keV transition in ¹⁷⁵Lu // Z. Phys. 1974. Bd. 267. S. 389 391.
- Quinones L.M., Behar M., Grabowski Z.W. et al. Multipol mixing ratios of transitions in ¹⁷⁵Lu populated from the decay of ¹⁷⁵Hf // Z. Phys. A. 1975. Vol. 274. P. 173 178.
- 21. Троицкая А.Г., Карташов В.М., Шевелев Г.А. Внутриядерная конверсия в редкоземельных элементах // Изв. Ан КазССР. Сер. физ.-мат. - 1977. - № 4. -С. 8 - 15.
- Deepa S., K.V. Sai, D. Rao et al. Anomalous conversion of the 113,8 keV transition in ¹⁷⁵Lu // Proc. of the DAE Symposium on Nuclear Physics. - 2011. - Vol. 56. -P. 378 - 379.
- Фересин А.П., Шульц Г. Анализ М1-внутриядерной конверсии на основе потенциала Саксона - Вудса // Изв. АН СССР. Сер. физ. - 1972. - Т. 36. - С. 890 -898.
- 24. Булгаков В.В., Кирищук В.И., Лашко А.П. и др. Определение коэффициентов внутренней конверсии γ-перехода с энергией 343 кэВ на К- и L-подоболочках ¹⁷⁵Lu // Изв. АН СССР. Сер. физ. 1989. Т. 53. С. 855 857.

- McNelles L.A., Campbell J.L. Absolute efficiency calibration of coaxial Ge(Li) detectors for the energy range 160-1330 keV // Nucl. Instrum. Methods. - 1973. -Vol. 109. - P. 241 - 251.
- 26. Булгаков В.В., Гаврилюк В.И., Лашко А.П. и др. Магнитный бета-спектрометр высокого разрешения ИЯИ АН УССР. - К., 1986. - 48 с. - (Препр. / АН УССР. Ин-т ядерных исслед.; КИЯИ-86-33).
- 27. Хоменков В.П. Дослідження атомно-ядерних ефектів у процесі внутрішньої конверсії гамма-променів: автореф. дис. ... канд. фіз.-мат. наук / ІЯД. К., 2003. 19 с.
- Lashko A.P., Lashko T.N., Martinishin V.A. The gamma-ray intensities from the ¹⁷⁵Hf decay // LXIII Intern. Conf. "Nucleus 2013": Book of abstracts (October 8 - 12, 2013, Moscow). - Saint-Petersburg, 2013. -P. 91.
- Emery G.T., Perelman M.L. Dynamic penetration effects in the internal conversion of electric dipole transitions in Lu¹⁷⁵ // Phys. Rev. 1966. Vol. 151. P. 984 992.
- Ashery D., Blaugrund A.E., Kalish R. E2/M1 mixing ratios and K conversion coefficients in odd-mass rotational nuclei // Nucl. Phys. - 1966. - Vol. 76. - P. 336 -346.
- 31. Nilsson O., Tornkvist S, Malmsten. G. et al. Internal conversion studies of the 114 keV transition in ¹⁷⁵Lu // Z. Phys. - 1969. - Vol. 221. - P. 106 - 112.
- 32. Reierson J.D., Nelson G.C., Hatch E.N. Gamma-ray measurements with a bent-crystal spectrometer // Nucl. Phys. A. - 1971. - Vol. 153. - P. 109 - 120.
- 33. Джелепов Б.С. Методы разработки сложных схем распада. Л.: Наука, 1974. 232 с.
- 34. Hatch E.N., Boehm F., Marmier P., DuMond J.W.M. Rotational and intrinsic levels in Tm¹⁶⁹ and Lu¹⁷⁵ // Phys. Rev. - 1956. - Vol. 104. - P. 745 - 752.
- 35. Johansen K.H., Bengtson B., Hansen P.G., Hornshoj P. The 1/2⁻ [514] rotational band in ¹⁷⁵Lu and the Q-value of the electron-capture decay // Nucl. Phys. A. - 1969.
 Vol. 133. - P. 213 - 221.
- 36. Nilsson O., Tornkvist S, Malmsten. G. et al. Internal conversion studies of the 114 keV transition in ¹⁷⁵Lu // Z. Phys. - 1969. - Vol. 221. - P. 106 - 112.
- 37. Novakov T., Hollander J.M. Anomalous L subshell ratios in mixed M1-E2 transitions // Nucl. Phys. - 1964. -Vol. 60. - P. 593 - 608.
- Bernstein E.M., Graetzer R. Internal conversion electrons following Coulomb excitation of highly deformed odd-A nuclei // Phys. Rev. 1960. Vol. 119. P. 1321 1330.
- 39. Григорьев В.Н., Сергеенков Ю.В. Внутренняя конверсия электрических дипольных переходов в ¹⁷⁵Lu // Изв. АН СССР. Сер. физ. - 1971. - Т. 35. - С. 1638 - 1643.
- 40. *Basunia M. S.* Nuclear Data Sheets for A = 175 // Nucl. Data Sheets - 2004. - Vol. 102. - P. 719 - 900.
- 41. Листенгартен М.А. Аномальная внутренняя конверсия в электромагнитных переходах атомных ядер // Современные методы ядерной спектроскопии 1985 / Под ред. Б. С. Джелепова - Л.: Наука, 1986. - С. 142 - 204.
- 42. Krane K.S. E2, M1 multipole mixing ratios in odd-mass nuclei, A > 150 // Atom. Data Nucl. Data Tables. -1976. - Vol. 18. - P. 137 - 203.

А. П. Лашко, Т. Н. Лашко

Институт ядерных исследований НАН Украины, Киев

СТРУКТУРНО-ЯДЕРНЫЕ ЭФФЕКТЫ ВО ВНУТРЕННЕЙ КОНВЕРСИИ *М*1-ПЕРЕХОДОВ С ЭНЕРГИЯМИ 114 И 138 кэВ В ¹⁷⁵Lu

При помощи магнитного β-спектрометра типа $\pi\sqrt{2}$ и двух коаксиальных HPGe-детекторов измерены интенсивности линий электронов внутренней конверсии и γ-лучей из распада ¹⁷⁵Hf (T_{1/2} = 70 сут). Определены коэффициенты внутренней конверсии $\alpha_{\rm K}$ и параметры проникновения λ для ротационных магнитных дипольных переходов γ114 и γ138 кэВ в ¹⁷⁵Lu.

Ключевые слова: радиоактивность, ¹⁷⁵Hf, HPGe-детекторы, магнитный спектрометр, интенсивности γ-лучей, интенсивности линий электронов внутренней конверсии, внутренняя конверсия, параметр проникновения.

A. P. Lashko, T. N. Lashko

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv

NUCLEAR STRUCTURE EFFECTS IN THE INTERNAL CONVERSION OF THE 114 and 138 keV *M*1-TRANSITIONS IN ¹⁷⁵Lu

Conversion-line and γ -ray intensities from the decay of ¹⁷⁵Hf (T_{1/2} = 70 days) have been measured with $\pi\sqrt{2}$ magnetic β -spectrometer and two coaxial HPGe-detectors. The values of the internal conversion coefficient α_K and penetration parameter λ for intraband magnetic dipole transitions γ 114 and γ 138 keV in ¹⁷⁵Lu were determined.

Keywords: radioactivity, ¹⁷⁵Hf, HPGe-detectors, magnetic spectrometer, measurements I_γ, I(ce), internal conversion, penetration parameter.

REFERENCES

- Raman S., Nestor Jr. C.W., Ichihara A., Trzhaskovskaya M.B. How good are the internal conversion coefficients now? // Phys. Rev. C. - 2002. - Vol. 66. -044312.
- Band I.M., Trzhaskovskaya M.B. Tables of gamma rays internal conversion coefficients on *K*-, *L*- and *M*-shells 10 ≤ Z ≤ 104. - Ltningrad: Leningrad Nuclear Physics Institute, 1978. - 179 p. (Rus)
- Hager R.S., Seltzer E.C. Internal conversion tables. Part I: K-, L-, M-shell conversion coefficients for Z = 30 to Z = 103 // Nucl. Data Tables A. - 1968. - Vol. 4. -P. 1 - 235.
- Rösel F., Fries H.M., Alder K., Pauli H.C. Internal conversion coefficients for all atomic shells // Atom. Data Nucl. Data Tables. - 1978. - Vol. 21. - P. 91 - 514.
- 5. Band I.M., Listengarten M.A., Feresin A.P. Anomalies in the gamma rays internal conversion coefficient. -Leningrad: Nauka, 1976. - 175 p. (Rus)
- Hager R.S., Seltzer E.C. Internal conversion tables. Part III: Coefficients for the analysis of penetration effects in internal conversion and E0 internal conversion // Nucl. Data Tables A. - 1969. - Vol. 6. - P. 1 - 127.
- Pauli H.C. Finite nuclear size effects in internal conversion // Helv. Phys. Acta. 1967. Vol. 40. P. 713 744.
- Church E.L., Weneser J. Effect of the finite nuclear size on internal conversion // Phys. Rev. - 1956. - Vol. 104.
 - P. 1382 - 1386.
- 9. Vojkhanskij M.E., Listengarten M.A. // Izv. AN SSSR. Ser.fiz. - 1959. - Vol. 23. - P. 238 - 243. (Rus)
- Listengarten M.A. Gamma rays internal conversion // Gamma rays / Ed. L. A. Sliv. - Moskva, Leningrad: Publishing House of the USSR Academy of Sciences,

1961. - P. 271 - 507. (Rus)

- 11. *Vojkhanskij M.E.* Radiative transitions in a generalized model of the nucleus // Ibid. P. 44 84. (Rus)
- 12. Berlovich E.E. Experimental studies of radiative transitions in nuclei // Ibid. - P. 85 - 270. (Rus)
- Bor O., Mottelson B. The structure of the atomic nucleus / Trans. from English; Ed. L. A. Sliv. Moskva: Mir, 1977. - Vol. 2. - 664 p. (Rus)
- 14. Grodzins L. // UFN. 1971. Vol. 103. P. 37 86. (Rus)
- 15. Kyryshchuk V.I., Lashko A.P., Lashko T.M. // UFZh. 2012. Vol. 57. P. 1097 1107. (Ukr)
- 16. *Evaluated* Nuclear Structure Data File (National Nuclear Data Center, Brookhaven National Laboratory) [http://www.nndc.bnl.gov].
- Protop C. On the calculation of the penetration factor for the internal conversion of magnetic dipole transitions in deformed nuclei // Rev. Roum. Phys. - 1971. -Vol. 16. - P. 951 - 959.
- Listengarten M.A. Actual problems of physics related to the study of internal conversion electrons with magnetic spectrometers // Prismatic beta spectrometers and their application. - Vilnius: Publishing House of the Institute of Physics, Academy of Sciences of the Lithuanian SSR, 1971. - P. 169 - 192. (Rus)
- Constantinescu F., Enulescu Al., Gelberg A. et al. Internal conversion of 113.8 keV transition in ¹⁷⁵Lu // Z. Phys. - 1974. - Bd. 267. - S. 389 - 391.
- Quinones L.M., Behar M., Grabowski Z.W. et al. Multipol mixing ratios of transitions in ¹⁷⁵Lu populated from the decay of ¹⁷⁵Hf // Z. Phys. A. 1975. Vol. 274. P. 173 178.
- 21. Troitskaya A.G., Kartashov V.M., Shevelev G.A. // Izv.

An KazSSR. Ser. fiz.-mat. - 1977. - No. 4. - P. 8 - 15. (Rus)

- Deepa S., K.V. Sai, D. Rao et al. Anomalous conversion of the 113,8 keV transition in ¹⁷⁵Lu // Proc. of the DAE Symposium on Nuclear Physics. - 2011. - Vol. 56. -P. 378 - 379.
- 23. Feresin A.P., Shul'ts G. // Izv. AN SSSR. Ser. fiz. 1972. Vol. 36. P. 890 898. (Rus)
- 24. Bulgakov V.V., Kirishchuk V.I., Lashko A.P. et al. // Izv. AN SSSR. Ser. fiz. - 1989. - Vol. 53. - P. 855 - 857. (Rus)
- McNelles L.A., Campbell J.L. Absolute efficiency calibration of coaxial Ge(Li) detectors for the energy range 160-1330 keV // Nucl. Instrum. Methods. 1973. Vol. 109. P. 241 251.
- 26. Bulgakov V.V., Gavrilyuk V.I., Lashko A.P. et al. High resolution magnetic beta-spectrometer in INR Ukrainian Academy of Sciences. - Kyiv, 1986. - 48 p. - (Preprint / Ukrainian Academy of Sciences. Institute for Nuclear Research; KINR-86-33). (Rus)
- 27. *Khomenkov V.P.* Study of atomic and nuclear effects in the gamma rays internal conversion: Thesis PhD abstract / INR. Kyiv, 2003. 19 p. (Ukr)
- Lashko A.P., Lashko T.N., Martinishin V.A. The gammaray intensities from the ¹⁷⁵Hf decay // LXIII Intern. Conf. "Nucleus 2013": Book of abstracts (October 8 - 12, 2013, Moscow). - Saint-Petersburg, 2013. - P. 91.
- Emery G.T., Perelman M.L. Dynamic penetration effects in the internal conversion of electric dipole transitions in Lu¹⁷⁵ // Phys. Rev. - 1966. - Vol. 151. - P. 984 - 992.
- Ashery D., Blaugrund A.E., Kalish R. E2/M1 mixing ratios and K conversion coefficients in odd-mass rotational nuclei // Nucl. Phys. - 1966. - Vol. 76. - P. 336 - 346.
- 31. Nilsson O., Tornkvist S, Malmsten. G. et al. Internal conversion studies of the 114 keV transition in ¹⁷⁵Lu

// Z. Phys. - 1969. - Vol. 221. - P. 106 - 112.

- Reierson J.D., Nelson G.C., Hatch E.N. Gamma-ray measurements with a bent-crystal spectrometer // Nucl. Phys. A. - 1971. - Vol. 153. - P. 109 - 120.
- 33. *Dzhelepov B.S.* Development methods complex decay schemes. Leningrad: Nauka, 1974. 232 p. (Rus)
- 34. Hatch E.N., Boehm F., Marmier P., DuMond J.W.M. Rotational and intrinsic levels in Tm¹⁶⁹ and Lu¹⁷⁵ // Phys. Rev. - 1956. - Vol. 104. - P. 745 - 752.
- 35. Johansen K.H., Bengtson B., Hansen P.G., Hornshoj P. The 1/2⁻ [514] rotational band in ¹⁷⁵Lu and the Q-value of the electron-capture decay // Nucl. Phys. A. - 1969.
 Vol. 133. - P. 213 - 221.
- 36. Nilsson O., Tornkvist S, Malmsten. G. et al. Internal conversion studies of the 114 keV transition in ¹⁷⁵Lu // Z. Phys. - 1969. - Vol. 221. - P. 106 - 112.
- Novakov T., Hollander J.M. Anomalous L subshell ratios in mixed M1-E2 transitions // Nucl. Phys. - 1964. -Vol. 60. - P. 593 - 608.
- Bernstein E.M., Graetzer R. Internal conversion electrons following Coulomb excitation of highly deformed odd-A nuclei // Phys. Rev. 1960. Vol. 119. P. 1321 1330.
- 39. *Grigor'ev V.N., Sergeenkov Yu.V.* // Izv. AN SSSR. Ser. fiz. 1971. Vol. 35. P. 1638 1643. (Rus)
- 40. *Basunia M. S.* Nuclear Data Sheets for A = 175 // Nucl. Data Sheets - 2004. - Vol. 102. - P. 719 - 900.
- 41. Listengarten M.A. Abnormal internal conversion of electromagnetic transitions in atomic nuclei // Modern methods of nuclear spectroscopy 1985 / Ed. B. S. Dzhelepov. - Leningrad: Nauka, 1986. - P. 142 - 204. (Rus)
- 42. Krane K.S. E2, M1 multipole mixing ratios in odd-mass nuclei, A > 150 // Atom. Data Nucl. Data Tables. -1976. - Vol. 18. - P. 137 - 203.

Надійшла 03.11.2014 Received 03.11.2014