РАДІОБІОЛОГІЯ ТА РАДІОЕКОЛОГІЯ RADIOBIOLOGY AND RADIOECOLOGY

УДК 615.849 + 614.7:613

https://doi.org/10.15407/jnpae2018.03.280

Yu. A. Tomilin¹, L. I. Grygorieva^{1,*}, A. V. Grishan²

¹ Petro Mohyla Black Sea National University, Mykolaiv, Ukraine ² Laboratory of External Dosimetry, South-Ukraine NPP, Yuzhnoukrainsk, Mykolaiv region, Ukraine

*Corresponding author: kafecobezpeka@ukr.net

RADIOACTIVE DUST WITH 106Ru OVER THE SOUTHERN REGION OF UKRAINE

According to research results of ¹⁰⁶Ru content in the air of certain settlements of Mykolaiv region, the radioecological situation in the southern region of Ukraine was analyzed due to the presence of the radioactive cloud in September - October 2017. A preliminary attempt was made to estimate the committed effective dose from the inhaled flow of ¹⁰⁶Ru to human during the stay of radionuclide in the air over Mykolaiv region.

Keywords: 106Ru, radioactive dust, effective dose.

1. Introduction

During the end of September and October 2017, various institutions determined the radioactive ^{106}Ru in the air over Ukraine. As it is known from the media, the highest content of ^{106}Ru in the air was recorded above Zaporizhzhia - 40 mBq/m³, over Mykolaiv region, near Kyiv levels were about 30 mBq/m³. In Zaporizhzhia region, the average volumetric activity of ^{106}Ru in the air was 8 - 10 mBq/m³.

The presence of this radionuclide in the air in October 2017 was registered not only in Ukraine but also in Russia and the counties of EU. The presence of ¹⁰⁶Ru in the air was confirmed by the State Service for Hydrometeorology and Environmental Monitoring of Russia [1]. The highest data, which exceeded the background level in thousands times were registered at the period 26.09.2017 - 03.10.2017 in Arghayash (Chelyabinsk region), where Federal State Unitary Enterprise "Mayak Production Association" State Enterprise "Rosatom located, – is the leading enterprise of the Russian nuclear weapons complex and provides state security, fulfilling the state defense order for the production of components of modern nuclear weapons. Also, on 26 - 29.09.2017, 106Ru in the air was registered in Tatarstan, Volgograd and Rostov-on-Don. Due to activity of the anticyclones that operated at the end of September over the territories of the Southern Urals and the Caspian Lowland, there were conditions for the transfer of ¹⁰⁶Ru to Ukraine and the Mediterranean and Northern Europe regions. The Czech Republic recorded the appearance of ¹⁰⁶Ru in 29.09.2017. The maximum activity of ¹⁰⁶Ru in the air in Czech reached several tens of mBq/m³. After 24.11.2017, the concentration of ¹⁰⁶Ru decreased to 0.001 mBq/m³ [1]. The presence of ¹⁰⁶Ru in the air was detected not only in Czech Republic, but also in other European countries

(Fig. 1): Switzerland, Poland, Italy, Germany, Austria, Slovakia and others. The highest level of ¹⁰⁶Ru in France was recorded in Nice in October 2 - 9; in some parts of Romania the concentration of ¹⁰⁶Ru in the air was 1.5 - 2 times higher than in Russia which is up to 10 mBq/m³. After 13.10.2017 the presence of this radionuclide in the air in these states was not observed.

The purpose of the research is to estimate the prevalence of the dust with ¹⁰⁶Ru in Mykolaiv region as at one of the southern regions, and rough estimate of dose load for the population from elevated levels of ¹⁰⁶Ru in the air.

2. Research methods

As the materials were taken the results of the radiometry of atmospheric air performed at the Laboratory of External Dosimetry of the South-Ukraine NPP (SUNPP). Sampling was carried out by precipitation method on a filter FNN-15-1.5 "Pitryanov's Fabric" with further measurement on the ORTEC GEM60-83-SMP gamma spectrometer. No. 54-P51294A (Certificate "11201212403416). The materials of our radioecological researches in the Mykolaiv region were also taken [2 - 5].

3. Results and discussion

Results. At the Laboratory of External Dosimetry of the SUNPP ¹⁰⁶Ru was registered in the air on the 30-km zone around the Nuclear Power Plant during the time from the end of September to the 1 October 2017 (Table). The appearance of ¹⁰⁶Ru in the air at that area occurred on 22 - 29.09.2017 at the level of 0.004 Bq/m³ (Yuzhnoukrainsk) by results of spectrometric studies. Lately (from 26.09.2017) the content of radionuclide in the air began to increase to 0.014 - 0.024 Bq/m³. The maximum value was

© Yu. A. Tomilin, L. I. Grygorieva, A. V. Grishan, 2018

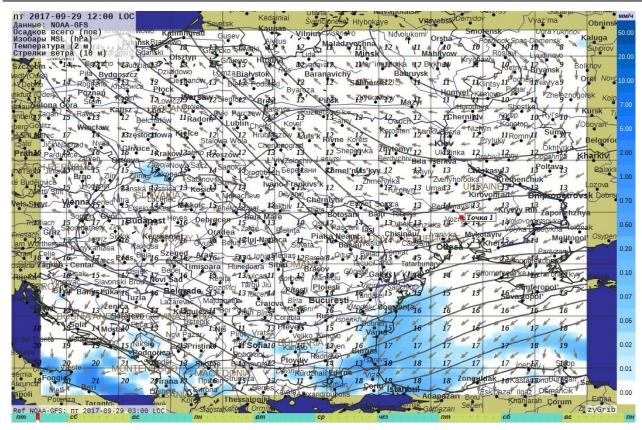


Fig. 1. Map of the movement of the cloud with ¹⁰⁶Ru over the territory of Ukraine and other states.

The content of ¹⁰⁶ Ru in the air of the surveillance zo	ne of the SUNPP
--	-----------------

Place of selection	Distance from the SUNPP, km	Time of exposition	Date of measurement	Contents of ¹⁰⁶ Ru, Bq/m ³
LZD Yuzhnoukrainsk	3.0	22.09.2017 - 29.09.2017	04.10.2017	3.9 · 10 ⁻³
Arbuzinka	11.0	26.09.2017 - 03.10.2017	05.10.2017	$2.9 \cdot 10^{-2}$
Konstantinivka	6.0	26.09.2017 - 03.10.2017	05.10.2017	$2.3 \cdot 10^{-2}$
Ryabokonove	33.5	26.09.2017 - 03.10.2017	05.10.2017	$1.4 \cdot 10^{-2}$
Agronomy	5.0	27.09.2017 - 03.10.2017	05.10.2017	$1.7 \cdot 10^{-2}$
Buzke	7.5	27.09.2017 - 03.10.2017	05.10.2017	$2.4 \cdot 10^{-2}$
Volya	4.5	28.09.2017 - 03.10.2017	05.10.2017	$2.4 \cdot 10^{-2}$
ORU-150	0.5	28.09.2017 - 03.10.2017	05.10.2017	$2.4 \cdot 10^{-2}$
LZD Yuzhnoukrainsk	3.0	29.09.2017 - 06.10.2017	06.10.2017	$1.6 \cdot 10^{-2}$
LZD Yuzhnoukrainsk	3.0	06.10.2017 - 09.10.2017	09.10.2017	<mda< td=""></mda<>
Arbuzinka	11.0	03.10.2017 - 10.10.2017	10.10.2017	$4.1 \cdot 10^{-4}$
Konstantinivka	6.0	03.10.2017 - 10.10.2017	10.10.2017	$4.8 \cdot 10^{-4}$
Ryabokonove	33.5	26.07.2017 - 03.10.2017	05.10.2017	$1.4 \cdot 10^{-2}$
Ryabokonove	33.5	03.10.2017 - 10.10.2017	10.10.2017	$2.2 \cdot 10^{-4}$
Agronomy	5.0	04.10.2017 - 11.10.2017	11.10.2017	$2.6 \cdot 10^{-4}$
Buzke	7.5	04.10.2017 - 11.10.2017	11.10.2017	$4.6 \cdot 10^{-4}$
Volya	4.5	05.10.2017 - 12.10.2017	12.10.2017	<mda< td=""></mda<>
ORU-150	4.5	05.10.2017 - 12.10.2017	12.10.2017	<mda< td=""></mda<>

The previously recorded values of 106 Ru content were on the background levels and did not exceed the MDA ($\approx 4.0 \cdot 10^{-5} \text{ Bq/m}^3$). Permissible levels 0.5 Bq/m³.

 $0.029~Bq/m^3$, which did not exceeded the maximum limits permitted according to the radiation safety standards of Ukraine [6] $-0.5~Bq/m^3$.

On 23.09.2017 - 05.10.2017 the content of 106 Ru in

the air began to decrease $(0,0002 - 0,0005 \text{ Bq/m}^3)$ and already on 12.10.2017 was at the level of the background value. General picture of the change in the ^{106}Ru content in the air over Mykolaiv region in

September - October 2017 is shown on Fig. 2. In mid-October, the radioactive dust has already gone beyond Ukraine. In this case, of course, a certain amount of 106 Ru settled on the soil. The previously recorded values of 106 Ru content were on the background levels and not exceed the MDA $(4.0 \cdot 10^{-5} \text{ Bg/m}^3)$.

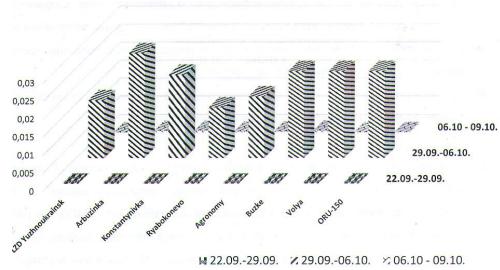


Fig. 2. Changing the content of ¹⁰⁶Ru in the air over the territory of Mykolaiv region in the area of SUNPP, in exponential units of concentration (in control points in accordance with WG 0.0026.0120 "Regulations of radiation monitoring of SUNPP"), Bq/m³. *Designation*: control points are given according to their distance from the SUNPP: LZD Yuzhnoukrainsk (Laboratory of External Dosimetry of the SUNPP) - 3 km; village Konstantinivka - 6 km; village Arbuzinka - 11 km; village Ryabokonevo - 33,5 km; village Buzke - 7.5 km; village Agronomy - 5 km; ORU-150 - 0.5 km; village Volya - 4.5 km.

Discussion. Ruthenium is an element of the eighth group of the V period of the periodic system of chemical elements. This is one of the platinum elements in living organisms. It accumulates mainly in the muscles. It is close to platinum metals (iridium, osmium, palladium, rhodium) by its chemical properties [7]. It is used in small atomic generators / nuclearisotope battery of satellites. It is used as a radioactive indicator in medicine as part of applicators for radiation therapy.

¹⁰⁶Ru is beta-radioactive element. This isotope of ruthenium formed during the operation of NPP and nuclear explosions. It decomposes into the scheme:

106
Ru (T_{1/2} = 368.2 days) → 106 Rh (T_{1/2} =
= 30 s) → 106 Pd (stab) [8].

¹⁰⁶Ru is in danger to humans because it is placed in the same level with ¹³⁷Ce of its toxicity. When it enters the atmosphere, water objects, it enters the human body with inhalation and oral paths, it accumulates in the lungs and organs of the gastrointestinal tract. This, in turn, contributes to the deterioration of the nervous, cardiovascular and digestive system, as well as to the increased risk of cancer. At the same time, the consequences of its harmful effects do not appear immediately, but in a few months.

Unlike other radionuclides, the distribution of

ruthenium in the body is determined by the physiological state of the organism and the physicochemical properties of the compounds of the ¹⁰⁶Ru receptor, which complicates the assessment of the toxic hazard of ruthenium [9].

The dynamics of 106 Ru content in the atmospheric air in each of the settlements during the two-week period (from 22.09.2017 to 05-06.10.2017.) were analyzed. The total inflow of 106 Ru to human in each settlement – A_i (Bq) – can be defined as:

$$A_i = 22.2 \left(\frac{m^3}{day}\right) \cdot W_i \left(\frac{Bq}{m^3}\right) \cdot t_i(day),$$

where 22.2 is the reference daily volume of inhaling air by human, $\frac{m^3}{day}$ [6]; W_i is 106 Ru activity in the air

during the period $\frac{Bq}{m^3}$; t_1 is the duration of the period, dav.

An effective dose from the inhaled flow of 106 Ru to human H_i (Sv) can be defined as:

$$H_i = A_i \cdot k$$

where k is the dose rate of 106 Ru at inhalation intake (taken $1.8 \cdot 10^{-8}$ Sv/Bq [6]).

As a result, it was found the committed effective dose from the inhaled flow of ¹⁰⁶Ru for the population

 $-0.077\pm0.001~\mu Sv$ when scattering values from 0,045 to 0,115 μSv . This is less than 0.01 % of the annual effective dose limit for the population (category B) $-1000~\mu Sv$ [6].

It is clear that today the radiation background from ¹⁰⁶Ru in this territory has not changed significantly relative to the level to the ruthenium cloud.

REFERENCES

- 1. http://www.meteorf.ru/product/infomaterials/91/150 78/?sphrase_id=135727
- 2. L. Grygorieva. Formation of the dose load on a person in the territory exposed to the emissions of nuclear power plants. Radiation Biology. Radioecology 50(6) (2010) 619. (Rus)
- 3. L. Grygorieva et al. Current research areas to improve the system of ecological and dosimetric monitoring of territories near nuclear facilities. Naukovi Pratsi. Ser. Tekhnogenna Bezpeka 210(198) (2014) 18. (Ukr)
- 4. L. Grygorieva, Yu. Tomilin, K. Grygoriev. Radioecological risk of radionuclide transport to the environment with NPP releases and discharges. Nuclear and Radiation Safety 1(53) (2012) 29.
- L.I. Grygorieva, Y.A. Tomilin. Formation of Radiation Load per Person in the South of Ukraine: Factors, Forecasting, Countermeasures (Mykolaiv: Petro Mohyla Black Sea State University, 2009) 352 p. (Ukr)
- Norms of radiation safety of Ukraine (NRBU-97/D-2000).
- 7. A. Kabata-Pandias, X. Pandias. *Microelements in Soils and Plants* (Moskva: Mir, 1989) 439 p.
- 8. N.G. Gusev, P.P. Dmitriev. *Radioactive Chains* (Moskva: Energoatomizdat, 1988) 112 p.
- 9. L.A. Buldakov, Yu.M. Moskalev. *Problems of Distribution and Experimental Evaluation of Admissible Levels of Cesium-137, Strontium-90 and Ruthenium-106* (Moskva: Atomizdat, 1968) 241 p.

Ю. А. Томілін¹, Л. І. Григор'єва^{1,*}, А. В. Гришан²

¹ Чорноморський національний університет імені Петра Могили, Миколаїв, Україна ² Лабораторія зовнішньої дозиметрії, ВП «Южно-Українська АЕС», Южноукраїнськ, Миколаївська область, Україна

*Відповідальний автор: kafecobezpeka@ukr.net

РАДІОАКТИВНА ХМАРА З ¹⁰⁶Ru НАД ПІВДЕННИМ РЕГІОНОМ УКРАЇНИ

За результатами досліджень вмісту ¹⁰⁶Ru у повітрі окремих населених пунктів Миколаївщини проаналізовано радіоекологічну ситуацію в південному регіоні України через проходження радіоактивної хмари у вересні - жовтні 2017 р. Зроблена спроба визначення очікуваної ефективної дози від інгаляційного надходження ¹⁰⁶Ru для місцевого населення за час перебування радіонукліда в повітрі над Миколаївщиною.

Ключові слова: 106Ru, радіоактивна хмара, ефективна доза.

Ю. А. Томилин¹, Л. И. Григорьева^{1,*}, А. В. Гришан²

¹ Черноморский национальный университет имени Петра Могилы, Николаев, Украина ² Лаборатория внешней дозиметрии, ПП «Южно-Украинская АЭС», Южноукраинск,

² Лаборатория внешней дозиметрии, IIII «Южно-Украинская АЭС», Южноукраинск Николаевская область, Украина

*Ответственный автор: kafecobezpeka@ukr.net

РАДИОАКТИВНОЕ ОБЛАКО С 106 Ru НАД ЮЖНЫМ РЕГИОНОМ УКРАИНЫ

По результатам исследований содержания ¹⁰⁶Ru в воздухе отдельных населенных пунктов Николаевской области проанализирована радиоэкологическая ситуация в южном регионе Украины из-за прохождения радиоактивного облака в сентябре - октябре 2017 г. Сделана попытка оценки ожидаемой эффективной дозы от ингаляционного поступления ¹⁰⁶Ru для местного населения за время пребывания радионуклида в воздухе над Николаевшиной.

 $\mathit{Ключевые\ слова:}\ ^{106}\mathrm{Ru},$ радиоактивное облако, эффективная доза.

Надійшла 05.04.2018 Received 05.04.2018