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TWO-NEUTRON TRANSFER REACTIONS 

AND THE QUANTUM CHAOS MEASURE OF NUCLEAR SPECTRA 
 

A new statistical interpretation of the nuclear collective states is suggested and applied to analysis of states, found 

recently in rare earths and actinide nuclei by the two-neutron transfer reactions, in terms of the nearest neighbor-spacing 

distributions (NNSDs). Experimental NNSDs were obtained by using the complete and pure sequences of the collective 

states through an unfolding procedure. The two-neutron transfer reactions allow to obtain such a sequence of the 

collective states that meets the requirements for a statistical analysis. Their theoretical analysis is based on a linear 

approximation of the repulsion level density within the Wigner - Dyson theory. This approximation is successful to 

evaluate separately the Wigner chaos and Poisson order contributions. We found an intermediate behavior of NNSDs 

between the Wigner and Poisson limits. NNSDs turn out to be shifted from a chaos to order with increasing the length 

of spectra and the angular momentum of collective states. The symmetry breaking of states with the fixed projection of 

angular momenta K  is discussed in terms of degree of symmetry – the number of independent integrals of motion 

beyond the system energy – in relation to the periodic orbit theory. 

Keywords: statistical analysis, nuclear collective states, quantum and classical chaos, nearest neighbor-spacing 

distributions, Wigner and Poisson distributions. 
 

1. Introduction 
 

For last two decades the analysis of the energy 

spectra of nuclei, atoms and other many-body 

quantum system becomes very attractive [1 - 7]. The 

quantum chaos measure plays a central role for 

understanding the universal properties of energy 

spectra for such a quantum system. As these 

properties belong to the whole spectrum of a given 

many-body system, and they are too complicate for 

using simple models based on the model 

Hamiltonian [8, 9], the statistical methods can be 

applied successfully (see, e.g., the reviews [2, 7]). A 

constructive idea for improving statistics is to 

compile sequences of states having the same 

quantum numbers in several nuclei, – e.g., angular 

momentum and parity, – by using the so called 

unfolding procedure. For this purpose, one can use 

averaged distances between nuclear levels for their 

scale transformation. 

Different statistical methods have been proposed 

to obtain information on the chaoticity versus 

regularity in quantum spectra of a nuclear many-

body system [1 - 7, 10 - 15], see also the well known 

work by Bohigas, Giannoni and Schmit [16]. The 

short-range fluctuation properties in experimental 

spectra can be analyzed in terms of the nearest-

neighbor spacing distribution p(s) (NNSD) while the 

long-range correlations are usually analyzed in terms 

of the level number 2  and spectral rigidity 

3 statistics. The uncorrelated sequence of energy 

levels, originated by a regular dynamics, is described 

by the Poisson distribution. In the case of a 

completely chaotic dynamics, the energy intervals 

between levels follow mainly the Wigner (Gaussian 

Orthogonal Ensemble, GOE) distribution. An 

intermediate degree of chaos in energy spectra is 

usually obtained through a comparison of the 

experimental NNSDs with well known distributions 

[17 - 21] based on the fundamental works [15, 21 - 

23]. This comparison is carried out [10, 24 - 27] by 

using the least square-fit technique. The estimated 

values of parameters of these distributions shed light 

on the statistical situation with considered spectra. 

Berry and Robnik [19] derived the NNSD starting 

from the microscopic semiclassical expression for 

the level density through the Hamiltonian for a 

classical system. The Brody NNSD [18] is based on 

the expression for the level repulsion density that 

interpolates between the Poisson and the Wigner 

distribution by only one parameter. 

For a quantitative measure of the degree of 

chaoticity of the many-body dynamics, the statistical  
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probability distribution p(s) as function of the 

spacing s  between the nearest neighboring levels 

can be derived within the general Wigner - Dyson 

(WD) approach based on the level repulsion density 

g(s) (the units will be specified later) [1 - 4, 7, 21, 

23]. This approach can be applied in the random 

matrix theory, see for instance [1 - 3, 5, 7, 23], and 

also, for systems with a definite Hamiltonian [1 - 4, 

7]. Several exactly solvable statistical problems are 

also discussed, e.g., in [10, 24, 25] which are based 

mainly on the intermediate statistical approach [11]. 

In any case, the order in such systems is 

approximately associated with the Poisson 

dependence of p(s) on the spacing s  variable, that is 

obviously related to a constant g(s), independent of 

s . A chaoticity can be referred, mainly, to the 

Wigner distribution for ( )g s s .  

For a further study of the order-chaos properties of 

nuclear systems, it might be worth to apply a simple 

analytical approximation to the WD NNSD p(s) 

keeping the link to a level repulsion density g(s) [1, 4] 

and [23]. For analysis of the statistical properties in 

terms of the Poisson and Wigner distributions, one 

can use the linear WD (LWD) approximation to the 

level repulsion density g(s) [31, 32]. It is the two-

parameter approach; in contrast, e.g., to the one-

parameter Brody approach [18]. However, the LWD 

approximation, as based on a smooth analytical 

(linear) function g(s) of s, can be derived properly 

within the WD theory (see [1, 4, 32]). Moreover, with 

the same accuracy of more precise information on the 

separate Poisson order-like and Wigner chaos-like 

contributions within a linear level-repulsion density 

g(s), the NNSD LWD p(s) was reduced to one 

parameter [33]. One of the most attractive questions is 

a change of the statistical structure of NNSDs by the 

symmetry breaking due to the fixed projection of the 

angular momentum of collective states to the 

symmetry axis. For the case of the single-particle 

(s.p.) states, see for instance [31].  

In the present paper we discuss the application of 

NNSDs [1, 4, 7, 23, 31 - 33] for analyzing the 

experimental data [26 - 29], see also [34 - 39]. The 

article is organized as following. The data [34 - 39] 

based on the two-neutron transfer reactions for 

studying the collective states in heavy complex nuclei 

are analyzed in Sec. 2. An unfolding scale-transfor-

mation procedure for calculations of the experimental 

NNSDs for nuclear states in heavy complex nuclei is 

discussed in Sec. 3. Then, in this section, a short 

review of the theoretical Wigner - Dyson approaches 

for simple NNSD calculations [18, 31 - 33] is 

presented. In Sec. 4, they are used for the statistical 

analysis of the obtained experimentally [34 - 39] 

collective-excitation spectra, in contrast to the s.p. 

spectra considered in [2, 7] and [30] in Sec. 4. 

Symmetry breaking due to fixing the angular 

momentum projection K of the collective and s.p. 

states in relation to the Gutzwiller periodic orbit (PO) 

theory (POT) [40, 41] extended to arbitrary continuous 

symmetries of the Hamiltonian [42 - 54] is discussed in 

Sec. 5. The article is ended by a summary. 
 

2. Two-neutron transfer reactions 
 

To perform a statistical analysis of energy 

spacings, one needs the complete and pure level 

sequences. The completeness means absence of 

missing and incorrectly identified energy levels. For 

nuclear physics, this requirement is to use the levels 

with a given angular momentum I and parity . 

Additional quantum numbers can be considered in 

some problems, for instance, the isospin T or the 

angular momentum projection К to the symmetry 

axis. For a statistical evidence the level sequences 

should be enough long. These conditions are 

satisfied in the spectra obtained by using the 

reactions with a two neutron transfer. As an 

example, see the proton-triton reaction spectrum for 

the target 234 U  at the angle 5 (Fig. 1). 

The energy spectra were measured for 10 angles 

in the range of 5 - 40 degrees and, thus, the angular 

distributions for each excitation level were obtained 

(Figs. 2 and 3). To get information on the angular 

momenta I and parity  for the observed levels, the 

angular distributions were analyzed by using the 

coupled channel method through the program 

CHUCK3 based on the distorted wave Born 

approximation (DWBA). Multi-step calculations 

include a two-neutron transfer and excitations in the 

same nucleus (up to 8 ways). The initial aim of such 

experiments was investigations of the nature of 

multiple 0+ excitations. Spectra of 2+, 4+ and 6+ 

states were obtained as secondary information which 

turned out to be useful in the present statistical 

analysis.  

Figs. 2 and 3 demonstrate the quality of experi-

mental results and of their analysis. The final results 

of such study are shown in Fig. 4 for the 
230

Th 

nucleus. The energies, spins, parities and cross 

sections for each level are determined. They are 

combined for each given angular momentum.  
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Energy, keV 

Fig. 1. Spectrum for the 234U(p, t)232U reaction (in logarithmic scale) for a detection angle of 5. 

Most of the levels are labeled with their excitation energy in keV. 
 

 
Angle, deg 

 

Fig. 2. Angular distributions of assigned 0+ states in 230Th and their fit 

with CHUCK3 one-step calculations. Dashed lines show fits for 1- states as possible alternative assignments. 
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Angle, deg 

 

Fig. 3. Angular distributions of assigned 2+ states in 232U and their fit 

with CHUCK3 calculations (labels yield excitation energies in keV). 
 

In the framework of the problem under 

consideration, it is important to have information on 

the nature of states excited in a two-neutron transfer 

reaction. It was shown that, at least, the 0+, 2+, 4+ 

and 6+ states are collective. Some of evidences of the 

collective nature of these states are given below.  

Theoretical calculations of the energies, cross 

sections, and structure of the states excited in the 

two-neutron transfer were carried out within the 

framework of a quasiparticle-phonon model (QPM 

[6]) and the interacting boson model (IBM [7]). Both 

models give the absolute cross sections which are 

close to experimental ones. Fig. 5 demonstrates 

qualitatively good agreement of the experiment and 

calculations in frame of the QPM on left and IBM 

on right, see also [59]. Cumulative pictures of the 

experimental and theoretical spectroscopic factors 

are rather similar. As to the nature of these states, in 

all the low-lying states, quadrupole phonons are 

dominant with a relatively modest role of the 

octupole phonons. The contribution of the latter 

increases with the growing excitation energy. 
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Energy, keV 

 

Fig. 4. Experimental distribution of the (p, t) strength integrated in the angle region 0- 45 for 0+, 2+ and 4+ states in 230Th. 

The levels identified reliably are indicated by filled circles, and those identified tentatively are indicated by open ones. 
 

 
Energy, keV 

 
E, MeV 

 

Fig. 5. Experimental increments of the (p, t) strength in 230Th as compared to the QPM calculations (left). Comparison 

between the experimental (p, t) strength for the 0+ states in 228Th and the IBM calculation is given on right (c), the 

experimental versus the computed cumulative sum of (p, t) strengths is given too.  
 

The phenomenological IBM gives spectra of 0+, 

2+, and 4+ states which are close to the experiment, 

and their excitation cross sections, as well as the 

ratios of reduced transition probabilities 

B(E1)/B(E2). For example, Fig. 5 (right) shows the 

experimental and calculated spectra of 0+ states and 

the experimental increment of the (p,t) strength in 

comparison with the theoretical ones. It is quite 

natural to expect that the IBM is adjusted to the 

simplest phonon excitations and their satellites. In 
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the structure of a part of the 0+ states, in addition to 

the sd-bosons, an important role plays also 

pf-bosons. By other words, octupole excitations are 

essential. Thus, the collective nature of states excited 

in the (p, t)-reaction is confirmed in this model, too.  

Another evidence of the collective nature of 

states excited in the two-neutron transfer reaction is 

rotational bands that can be built from the identified 

states. After the assignment of spins to all excited 

states, the sequences of states, which can be 

distinguished, show the characteristics of a rotational 

band structure. The states associated with rotational 

bands were identified on the following conditions: 

i) the angular distribution for a state as the band 

member candidate is assigned by the DWBA 

calculations for the spin, that can be necessary to put 

into the band;  

ii) the transfer cross section in the (p, t) reaction 

to the states in the band has to be decreased with the 

increasing spin;  

iii) the energies of states in the band can be fitted 

approximately by the expression for a rotational band 

E = E0 + AI(I + 1) with a E0 constant, and a small and 

smooth variation of the inertial parameter А. 

Collective bands identified in such a way are 

shown in Fig. 6. Under the above criteria (i) - (iii), 

the procedure can be justified for some sequences. 

They are already known from gamma-spectroscopy 

to belong to the rotational bands. The straight lines 

in Fig. 6 strengthen the arguments for these 

assignments.  

Finally, multiplets of states are identified in the 

actinide nuclei which can be treated as quadruplets 

of one- and two-phonon octupole states. Since the 

octupole degree of freedom plays an important role 

in this mass region, such a result was expected 

though the identification of the two-phonon octupole 

quadruplet was obtained for the first time. Both 

quadruplets are shown in Fig. 6 (right). The levels 

excited in the two-neutron transfer reaction and 

identified in the way above described are included 

into the analysis of 623 states, see [32]. 
 

 
I(I + 1) 

 

 

 

Fig. 6. Collective bands based on the 0+, 2+, 4+, 1, 2 and 3 excited states in 230Th as assigned from the DWBA fit of 

the angular distributions (like shown in Figs. 2 and 3) from the (p, t) reaction (left), and assumed multiplets of states of 

the octupole one-phonon (bottom) and the octupole two-phonon (top) excitations associated with the corresponding 

collective bands (right): Levels are labeled by the energy in keV, and  is the cross section in microbarns.  
 

3. Theoretical approaches to NNSDs 
 

Unfolding procedure. To compare properly the 

statistical properties of different sequences to each 

other, one should convert any set of the energy 

levels into a set of the normalized spacing that can 

be done through the so-called unfolding procedure 

[3, 16] and [32]. In this procedure the original 

sequence of level energies Ei is transformed to a new 

dimensionless sequence i  (I = 1, 2, … ) numerate 

the levels) as mapping 
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( )i iN E                               (1) 
 

where ( )N E  is a smooth part of the cumulative 

level density, 
 

0

( ) ( ) ,

E

N E dE dN E dE                    (2) 

 

with the level density dN(E)/dE. As shown in Fig. 7, 

the cumulative density N(E) is the staircase function 

that counts the number of states with energies less or 

equal to E. Usually, a polynomial of not large order 

is used to fit N(E). In Fig. 7, testing the two 

polynomials, 
 

2

0 1 2( )N E a a E a E                     (3) 

and 
2 4

0 1 2( )N E a a E a E                      (4) 
 

one finds small differences for the corresponding 

fitting. In such a way, the spectra will be analyzed in 

terms of the spacing between the unfolded energy 

levels (1), 
 

1i i is                                  (5) 
 

 
 

Energy, keV 
 

Fig. 7. Histogram of the cumulative states’ numbers N(E) 

and their fitting by two polynomials (4) (green dashed) 

and (5) (red solid) for the 0+. (See color Figure on the 

journal website.) 
 

The NNSD is, then, the distribution of a probability 

p(s) to find the number of unfolded levels N  in the 

interval s. Notice that this unfolding procedure can 

be avoided for calculations within some 

approximations to the short-correlation statistical 

spectra [14, 15]. 

Analytical NNSD approximations. NNSDs p(s) 

are defined as the probability distribution, i.e., the 

probability to find a level between s and s + ds. As s 

is the neighbor level distance, this NNSD is, first of 

all, a quantitative measure of chaos and regularity 

for close correlations. The spectral fluctuations are 

not described respectively by Poisson and Wigner 

(GOE) limits: 
 

2

( ) exp( ) ( ) exp ,
2 4

P W

s s
p s s p s

  
     

 
 (6) 

 

i.e., the system is both not pure regular and nor pure 

chaotic. Several theoretical NNSDs were suggested 

for interpretations of the experimental NNSDs. The 

most popular is, e.g., the Brody distribution [18, 23] 
 

1( ) (1 ) exp( )q q

q qp s A q s A s                  (7) 
 

where q is a unique fitting parameter. The 

normalization constant is given by 
 

1

2
(1 )

1

q

q

q
A q

q



  
     

  
                  (8) 

 

where ( )x  is the Gamma function. In the limit 

0q , one has the Poisson distribution ( )Pp s  , and 

for 1q  one finds the Wigner limit ( )Wp s  (6). 

The new LWD approach is based on the 

expression for NNSD p(s) within the Wigner - 

Dyson theory [31, 32], 
 

1

LWD

0

( ) ( )exp ( )

s

p s A g s ds g s
 

    
 
           (9) 

 

where g(s) is the repulsion level density, which is 

assumed to be linear in s, as a smooth function of s, 
 

( )g s a bs                                 (10) 
 

a and b are fitting parameters, and LWDA  is the 

normalization constant. The latter can be expressed 

analytically in terms of the error functions by using 

the normalization conditions. This is the linear 

Wigner - Dyson (LWD) two-parametric approach 

[32]. The constants a  and b  can be related by the 

normalization conditions keeping, however, the 

quantitative measure of the separate Poisson and 

Wigner contributions. In this case, one gets LWD 1A   

and the one-parametric LWD distribution [33], 
 

2( ) [ ( ) ( ) ]exp[ ( ) ( ) 2],p s a w b w s a w s b w s      (11) 
 

where 
2( ) exp( )erfc( )a w w w w    

 

2 2( ) exp(2 )erfc ( )
2

b w w w


               (12) 

N
(E
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230Th  0+ states 
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For the limit w  ( 1a   and 0b ), one 
obtains the Poisson distribution ( )Pp s  while for 

0w  ( 0a   and 2)b , one arrives at the 

Wigner distribution ( )Wp s , see (6). 

Let us deal now with the two simplest billiard 
systems as a standard test: spherical and heart 
billiards, i.e. a system of independent particles 
moving in a cavity potential where the regular and 
chaotic behavior of classical trajectories takes place, 
respectively. Solving the corresponding eigenvalue 

problem, one can find the quantum spectrum and 
study its statistical properties. The Orsay group 
accumulated sequences of many (of the order of 
1000) eigenvalues which belong to the eigen-
functions of the same symmetry (e.g., the same 

angular momentum I and parity ). Numerical 
calculations, as well as experiments, provide the 
finite energy-level sequences of the whole spectrum 
for a quantum system.  

 

 
s s s 

a b c 

Fig. 8. NNSDs p(s) as functions of a dimensionless spacing variable s for (a) Poisson- and (b) Wigner-like numerical 

calculations and (c) Wigner-like results (see text) by staircase lines. One-parametric LWD (11) is shown by solid lines. 

Dots present the Poisson (a) and Wigner (b, c) (see Eq. 6).  
 

Fig. 8 shows (very) good agreement between the 
numerical calculations of the NNSDs p(s), Eq. (11), 
within the Wigner - Dyson theory [32, 33] for the 
circle (a) and heart (b) billiards as functions of the 
spacing variable s (in dimensionless units of the 
local energy level distances) as compared to the 
Poisson regular and Wigner chaotic distributions, 
respectively. In Fig. 8 (c) the nuclear data ensemble 
(NDE), which includes 1726 neutron and proton 
resonance energies, is found also in good agreement 
with the Wigner distribution of Eq. (6). Fig. 8 
presents also good agreement of the one-parametric 
LWD approximation (11) to the NNSD (9) with the 
corresponding numerical (a, b) and experimental 
NDE (c) distributions, along with their Poisson (a) 
and Wigner (b, c) limits (6). Other cases of the 
mixed order-chaos NNSDs are presented below in 
Figs. 9 - 13.  
 

4. Discussions of the results 
 

Experimental NNSDs fitted by the LWD appro-

ximation for the collective states excited in several 

rare-earth nuclei (12 nuclei, 128 states for energies 

E  3 MeV: a = 0.43, b = 0.77) and for 158Gd and 
168Er (2 nuclei, 58 states for energies E  4.5 MeV: a 

= 0.82, b = 0.20) are shown in Fig. 9. As seen from 

the comparison of (a) and (b) in Fig. 9, one finds an 

intermediate chaos-order behavior between the 

Wigner and Poisson limits (6). A shift of these 

experimental and theoretical NNSDs from the 

Wigner to Poisson contributions is clearly shown in 

this figure from left to right, that is related to the 

increasing of lengths of the collective energy 

spectrum. 

 
s s 

a b 
Fig. 9. Nearest neighbor spacing distributions p(s) (black solid staircase lines) as functions of the dimensionless spacing 
variable s for 0+ collective states and fits by the LWD (11) and the Brody (7) approach shown respectively by red solid 
and blue dashed lines: for the energies E  3 MeV in many rare nuclei (a) and for the energies E  4.2 MeV in 158Gd 
and 168Er nuclei (b). (See color Figure on the journal website.) 
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Fig. 10 shows the NNSDs for actinides, 

depending on the angular momentum I = 0+ - 6+ 

(4 nuclei, 438 states, namely 0+ states: a = 0,32, 

b = 0.98; 2+ states: a = 0.55, b = 0.59; 4+ states: 

a = 0.67, b = 0.41; 6+ states: a = 0.41, b = 0.81). As 

seen from Fig. 10, one finds a shift of the Wigner to 

Poisson contributions with increasing the angular 

momentum I from 0+ to 4+. Then, this shift slightly 

goes back to the Wigner limit because of missing 

levels [60] due to very small cross-sections in the 

two-neutron transfer-reaction experiments at 6+.  

Fig. 11 shows the comparison of the experimental 

and theoretical (QPM) NNSDs for the collective 

states 0+ in a few actinide nuclei 228Th, 230Th and 232U. 

Experimental (a) and theoretical QPM (b) results are 

presented for energies E  3 MeV (a = 0.36, b = 0.91 

and a = 0.49, b = 0.69, relatively) and theoretical 

QPM (c) calculations for energies in a wider region 

E  4.5 MeV (a = 0.72, b = 0.33). This figure 

indicates on completeness and collectivity of the used 

spectra because of good agreement of NNSDs 

between plots in (a) and (b). The comparison of (a, b) 

with (c) confirms the general law of a shift of NNSDs 

from the Wigner to the Poisson contribution with 

increasing the total energy interval. 

Cumulative distributions, 
 

0

( ) ( )

s

F s ds p s                         (13) 

 

are shown in Fig. 12 for actinides (4 nuclei, 438 

states) [32]. As presented by this figure in (a - d), for 

all the angular momenta the Wigner cumulative 

distribution well reproduces the behavior of empiric 

values at small spacing s while the Poisson 

distribution is better fitted these data at larger s. A 

good comparison of these data with LWD (11) and 

Brody (7) NNSDs is shown in lower plots (e - h). 

 

 
s s 

 

Fig. 10. The same as in Fig. 9 but for different states in the actinide nuclei: 0+, 2+, 4+ and 6+. 
 

 
s s s 

a b c 
 

Fig. 11. Comparison of NNSDs between the experimental data (a) and the theoretical QPM results (b) in the same 

energy interval up to 3 MeV in 228,230Th and 232U actinide nuclei, and those (c) up to 4.2 MeV. Other notations are the 

same as in Figs. 9 and 10.  
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s s s s 

Fig. 12. Cumulative distributions: upper line of plots (a) - (d) shows the comparison of the same experiment as in 

Fig. 11 with Poisson and Wigner limits (6); the lower line of plots (e) - (h) presents the comparison with the LWD (11) 

and Brody (7) approach. 

 

5. Symmetry breaking and extended POT 
 

Fig. 13 shows the symmetry breaking pheno-

menon for the actinide nuclei with mixing all 

projections K of the angular momentum 4+ (a) and 

fixing K = 0 (b), 2 (c) and 4 (d). As the angular 

momentum projection K is fixed in (b - d), one 

observes mainly a shift of the NNSDs to the chaotic 

Wigner contribution, in agreement with the results 

for the s.p. spectra [31]. For Hamiltonian systems 

(with interactions through a mean field or 

accounting also for a residue interaction), one can 

try to explain this symmetry breaking phenomenon 

by introducing a measure of the symmetry (or chaos) 

as the number of the independent single-valued 

integrals D of motion beyond the energy E. The 

symmetry breaking phenomena in such a quantum 

and classical particle system can be explained by 

decreasing the number of single-valued integrals D. 

We emphasize that there is an obvious relationship 

between symmetries of the Hamiltonian used in 

quantum and classical mechanics. 
 

 
s s 

Fig. 13. NNSDs for full spectrum (a) and symmetry breaking by fixed К = 0 (b), 2 (c) and 4 (d) projections of the 

angular momentum 4+ for the actinides which are included in Fig. 10; red solid and blue dashed lines are fits by the 

LWD (11) and Brody (7) NNSDs, respectively. (See color Figure on the journal website.) 
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In particular, in the mean-field approximation for 
Hamiltonians with an axially symmetric potential, 
one can take the degree of symmetry D as the same 
number of the independent integrals of motion in both 
the quantum and classical formulations [42, 43, 50 - 
53]. A bridge between these two different classical 
and quantum approaches is the semiclassical periodic-
orbit theory (POT) [40, 41] extended to continuous 
symmetries [42 - 51]. Within the POT, D can be taken 
as a number of the independent single-valued 
parameters for a particle action constant at a given 
system energy E. Assuming an existence of the only 
one such a single-valued integral of motion - the 
projection of the angular momentum K – for a 
potential with the axial symmetry, one has D = 1. 
Fixing the value of K = K0 we transform our system to 
a subsystem, due to a restriction in the phase space 
coordinates r and p, K(r, p) = K0, where there is no 
axial symmetry and D = 0, that decreases respectively 
the system symmetry (increases a chaoticity). The 
system with only one single-valued integral of 
motion, the energy E, is called completely chaotic 
[41]. Thus, the degree of symmetry D is reduced by 
one and one should expect respectively more a 
chaoticity of the system. 

Such a quantum-classical correspondence in the 
symmetry breaking can be described transparently in 
terms of the Poincare sections shown in Figs. 14 and 

15 – the final phase space coordinates p  
 
 

   

perpendicular to the symmetry axis z after many 
periods of particle motion along the reference 
periodic orbit (PO) starting from the initial point 

p  
 
 

   [51, 58]. In a completely integrable system, 

all classical trajectories are POs, e.g., in the 
harmonic oscillator with rational ratios of frequen-
cies [51, 43, 46]. In this completely degenerate case, 
the symmetry parameter D is maximal and equal to 
2n-2 for n degrees of freedom. This leads to a level 
density as sum over PO families [46]. (Note that for 
irrational ratios of frequencies, one can find 
subsystems with smaller symmetry parameter 
D = 2n-3, 2n-4 and so on.) It is in contrast to the 
opposite limit when the energy E is only one single-
valued integral of motion (D = 0) for a completely 
non-integrable Hamiltonian. In this case, one has 
fully a chaotic behavior of the motion along classical 
trajectories and, relatively, a discrete sum over 
isolated POs in the semiclassical density of quantum 
states in the POT [40, 41, 51, 42 - 53, 54]. Fig. 14 
obviously shows the increasing of chaos for the 
transitions from the integrable spheroidal cavity to 
the chaotic Hamiltonian systems with growing 
Legendre polynomial index L and deformation 
parameter  [58]. There is a manifestation of an 
agreement between the classical and the quantum 
chaos description for the same deterministic 
Hamiltonian because of a bridge by the extended 
semiclassical POT. Fig. 15 shows a shift to the 
chaoticity with the fixed s.p. angular momentum 
projection K as compared to all of mixed projections 
in Fig. 14. This shift is enhanced much with 
increasing the deformation of the system . Thus, 
the symmetry breaking phenomena in a particle 
system for a given Hamiltonian with a potential, 
depending on a parameter like the deformation 
parameter , can be described quantitatively by the 
degree of symmetry (chaos) D [42 - 54]. 

 

 
 

Fig. 14. Poincare sections ,v(v = /m) is the velocity perpendicular to the symmetry axis and m the mass of particle for 

spheroidal (SPH) cavity and 5 axially-symmetric shapes [1 (cos )]Lr R P    of the Woods - Saxon potential surface 

with indices L = 2, 3, 4, 5 of the Legendre polynomials (cos )LP   in the spherical coordinates r  by accounting for all 

projections of the angular momenta K; a = 0.005 in the two lower lines and a = 0.4 for two upper lines.  
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Fig. 15. The same as in Fig. 14 but for the fixed projection of the angular momentum K = 0; 

two upper lines: a = 0.005; two last lines: a = 0.4. 
 

In the case of the symmetry restoration, one has 

also to mention the bifurcations [52 - 54, 46] as 

catastrophe values of the deformation parameter a in 

Fig. 14. This shift is growing with increasing the 

system deformation a, where one solution of the 

classical Hamiltonian equations is transformed to the 

two solutions with a local increase of the symmetry 

parameter D and, therefore, with a local shift to a 

regular behavior. In the opposite – symmetry breaking 

– case, one of such parameters is fixed, e.g., the 

projection of the angular momentum K in a band of 

the collective states with a given total angular 

momentum I and parity . This restriction of the phase 

space should lead to a local increasing of chaos with 

respect to the order behavior [31] due to a local loss of 

the Hamiltonian symmetry. As seen from comparison 

between the Poincare sections of Figs. 14 with all 

values of K and Fig. 15 with a fixed K = 0 for a given 

polynomial PL and deformation a, the Poincare 

sections become obviously more chaotic than those 

with accounting for all the angular momentum 

projections K (see Fig. 14), i.e., the chaoticity measure 

increases with fixed K. Note also that, as expected, the 

chaoticity is enhanced with non-integrabity and 

complexity of the shapes. For strongly deformed 

actinide nuclei (see Fig. 13), one finds a good 

quantum number K and rather a pure sequence of the 

rotational bands. However, it might be not the case for 

other complex systems for which K is not a good 

quantum number. We are planning to work out such 

more complicate situations in a forthcoming paper.  

6. Summary 
 

The statistical analysis of the spectra of collective 

states in the deformed rare and actinide nuclei has 

been presented. The experimental data obtained 

from the two-neutron transfer reactions are 

discussed. The new method of the analysis of 

distributions of spacing intervals between the nearest 

neighbor levels (NNSDs) is suggested. This method 

has obvious advantages above the popular Brody 

method as giving the separate Wigner and Poisson 

contributions into the statistics of quantum spectra. 

Our LWD NNSDs can be also derived properly 

within the Wigner - Dyson theory, in contrast to the 

heuristic Brody approach. We found an intermediate 

behavior between the order and chaos in structures 

of quantum spectra of the collective states in terms 

of the Poisson and Wigner contributions. We 

observed a shift of NNSDs to the Poisson 

contributions with increasing the energy interval of 

these spectra and the angular momenta, that is in 

agreement with the random-matrix theory results. 

Statistical analysis of the cumulative distributions 

yields a relative role of the order and chaos 

depending on the spacing variable s . The 

symmetry-breaking effect with fixing the angular 

momentum projection K leads to a shift of the 

NNSDs to a more chaotic behavior (larger Wigner 

contribution). It is a general property for the 

collective and s.p. states. The quantitative measure 

of the chaoticity can be the symmetry degree D. In 

the mean field approximation, one can specify this 

measure within the extended semiclassical POT.  
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This work might be helpful for understanding the 
order-chaos transitions in the collective spectra of 
strongly deformed nuclei. As perspectives, we are 
planning to study more properly and systematically 
the statistical short- and long-range correlation 
properties of the nuclear collective states. The most 
attractive subject in these studies is the symmetry-
breaking phenomena.  
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РЕАКЦІЇ ДВОНЕЙТРОННОЇ ПЕРЕДАЧІ 

ТА МІРА КВАНТОВОГО ХАОСУ ЯДЕРНИХ СПЕКТРІВ 
 

Пропонуємо нову статистичну інтерпретацію ядерних колективних станів, які були нещодавно знайдені у 

двонейтронних реакціях передачі з рідкісними землями та актинідними ядрами, і застосування до їхнього 

аналізу розподілів найближчих сусідніх рівнів (РНСР). Отримано експериментальні РНСР з використанням 

повних та чистих послідовностей колективних станів через процедуру анфолдінга. Знайдено, що реакції 

двонейтронної передачі дозволяють отримати таку послідовність колективних станів, що задовольняє вимогам 

статистичного аналізу. Теоретичний аналіз базується на лінійному наближенні густини відштовхування рівнів у 

теорії Вігнера - Дайсона. Це наближення дає змогу обчислити окремо внески вігнеровського хаосу та 

пуассонівського порядку. Знайдено проміжну поведінку РНРС між граничними розподілами Вігнера та 

Пуассона. Виявляється, що РНРС зсувається від хаосу до порядку зі зростанням довжини спектрів і кутового 

моменту колективних станів. В якості перспектив статистичного аналізу обговорюється порушення симетрії 

станів при фіксації проекції кутового моменту К, зокрема у зв’язку з узагальненою квазікласичною теорією 

періодичних орбіт. 

Ключові слова: статистичний аналіз, ядерні колективні стани, квантовий і класичний хаос, розподіл 

найближчих сусідніх рівнів, розподіли Вігнера та Пуассона. 
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РЕАКЦИИ ДВУХНЕЙТРОННОЙ ПЕРЕДАЧИ 

И МЕРА КВАНТОВОГО ХАОСА ЯДЕРНЫХ СПЕКТРОВ 
 

Предлагаем новую статистическую интерпретацию ядерных коллективных состояний, недавно полученных 

в реакциях двухнейтронной передачи с редкими землями и актинидными ядрами, и применение к их анализу 

распределений ближайших соседних уровней (РБСУ). Получены экспериментальные РБСУ с использованием 

полных и чистых последовательностей коллективных ядерных состояний через процедуру анфолдинга. 

Найдено, что реакции двухнейтронной передачи позволяют получить такую последовательность коллективных 

состояний, которая удовлетворяет требованиям статистического анализа. Теоретический анализ основывается 

на линейном приближении плотности расталкивания уровней в теории Вигнера - Дайсона. Это приближение 

позволяет рассчитать отдельно вклады вигнеровского хаоса и пуассоновского порядка. Оказывается, что РБСУ 

сдвигаются от хаоса к порядку с ростом длины спектров и углового момента коллективных состояний. 

Обсуждаются перспективы исследования нарушения симметрии при фиксированной проекции углового 

момента K, в частности в связи с общей квазиклассической теорией периодических орбит. 

Ключевые слова: статистический анализ, ядерные коллективные состояния, квантовый и классический хаос, 

распределение ближайших соседних уровней, распределения Вигнера и Пуассона. 
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