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TWO-NEUTRON TRANSFER REACTIONS
AND THE QUANTUM CHAOS MEASURE OF NUCLEAR SPECTRA

A new statistical interpretation of the nuclear collective states is suggested and applied to analysis of states, found
recently in rare earths and actinide nuclei by the two-neutron transfer reactions, in terms of the nearest neighbor-spacing
distributions (NNSDs). Experimental NNSDs were obtained by using the complete and pure sequences of the collective
states through an unfolding procedure. The two-neutron transfer reactions allow to obtain such a sequence of the
collective states that meets the requirements for a statistical analysis. Their theoretical analysis is based on a linear
approximation of the repulsion level density within the Wigner - Dyson theory. This approximation is successful to
evaluate separately the Wigner chaos and Poisson order contributions. We found an intermediate behavior of NNSDs
between the Wigner and Poisson limits. NNSDs turn out to be shifted from a chaos to order with increasing the length
of spectra and the angular momentum of collective states. The symmetry breaking of states with the fixed projection of
angular momenta K is discussed in terms of degree of symmetry — the number of independent integrals of motion

beyond the system energy — in relation to the periodic orbit theory.
Keywords: statistical analysis, nuclear collective states, quantum and classical chaos, nearest neighbor-spacing

distributions, Wigner and Poisson distributions.

1. Introduction

For last two decades the analysis of the energy
spectra of nuclei, atoms and other many-body
guantum system becomes very attractive [1 - 7]. The
guantum chaos measure plays a central role for
understanding the universal properties of energy
spectra for such a quantum system. As these
properties belong to the whole spectrum of a given
many-body system, and they are too complicate for
using simple models based on the model
Hamiltonian [8, 9], the statistical methods can be
applied successfully (see, e.g., the reviews [2, 7]). A
constructive idea for improving statistics is to
compile sequences of states having the same
quantum numbers in several nuclei, — e.g., angular
momentum and parity, — by using the so called
unfolding procedure. For this purpose, one can use
averaged distances between nuclear levels for their
scale transformation.

Different statistical methods have been proposed
to obtain information on the chaoticity versus
regularity in quantum spectra of a nuclear many-
body system [1 - 7, 10 - 15], see also the well known
work by Bohigas, Giannoni and Schmit [16]. The
short-range fluctuation properties in experimental
spectra can be analyzed in terms of the nearest-

neighbor spacing distribution p(s) (NNSD) while the
long-range correlations are usually analyzed in terms

of the level number X? and spectral rigidity
A, statistics. The uncorrelated sequence of energy

levels, originated by a regular dynamics, is described
by the Poisson distribution. In the case of a
completely chaotic dynamics, the energy intervals
between levels follow mainly the Wigner (Gaussian
Orthogonal Ensemble, GOE) distribution. An
intermediate degree of chaos in energy spectra is
usually obtained through a comparison of the
experimental NNSDs with well known distributions
[17 - 21] based on the fundamental works [15, 21 -
23]. This comparison is carried out [10, 24 - 27] by
using the least square-fit technique. The estimated
values of parameters of these distributions shed light
on the statistical situation with considered spectra.
Berry and Robnik [19] derived the NNSD starting
from the microscopic semiclassical expression for
the level density through the Hamiltonian for a
classical system. The Brody NNSD [18] is based on
the expression for the level repulsion density that
interpolates between the Poisson and the Wigner
distribution by only one parameter.

For a quantitative measure of the degree of
chaoticity of the many-body dynamics, the statistical
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probability distribution p(s) as function of the
spacing S between the nearest neighboring levels
can be derived within the general Wigner - Dyson
(WD) approach based on the level repulsion density
g(s) (the units will be specified later) [1 - 4, 7, 21,
23]. This approach can be applied in the random
matrix theory, see for instance [1 - 3, 5, 7, 23], and
also, for systems with a definite Hamiltonian [1 - 4,
7]. Several exactly solvable statistical problems are
also discussed, e.g., in [10, 24, 25] which are based
mainly on the intermediate statistical approach [11].

In any case, the order in such systems is
approximately  associated with the Poisson
dependence of p(s) on the spacing s variable, that is
obviously related to a constant g(s), independent of
S. A chaoticity can be referred, mainly, to the
Wigner distribution for g(s) «cs.

For a further study of the order-chaos properties of
nuclear systems, it might be worth to apply a simple
analytical approximation to the WD NNSD p(s)
keeping the link to a level repulsion density g(s) [1, 4]
and [23]. For analysis of the statistical properties in
terms of the Poisson and Wigner distributions, one
can use the linear WD (LWD) approximation to the
level repulsion density g(s) [31, 32]. It is the two-
parameter approach; in contrast, e.g., to the one-
parameter Brody approach [18]. However, the LWD
approximation, as based on a smooth analytical
(linear) function g(s) of s, can be derived properly
within the WD theory (see [1, 4, 32]). Moreover, with
the same accuracy of more precise information on the
separate Poisson order-like and Wigner chaos-like
contributions within a linear level-repulsion density
g(s), the NNSD LWD p(s) was reduced to one
parameter [33]. One of the most attractive questions is
a change of the statistical structure of NNSDs by the
symmetry breaking due to the fixed projection of the
angular momentum of collective states to the
symmetry axis. For the case of the single-particle
(s.p.) states, see for instance [31].

In the present paper we discuss the application of
NNSDs [1, 4, 7, 23, 31-33] for analyzing the
experimental data [26 - 29], see also [34-39]. The
article is organized as following. The data [34 - 39]
based on the two-neutron transfer reactions for
studying the collective states in heavy complex nuclei
are analyzed in Sec. 2. An unfolding scale-transfor-
mation procedure for calculations of the experimental
NNSDs for nuclear states in heavy complex nuclei is
discussed in Sec.3. Then, in this section, a short
review of the theoretical Wigner - Dyson approaches

for simple NNSD calculations [18, 31 - 33] is
presented. In Sec. 4, they are used for the statistical
analysis of the obtained experimentally [34 - 39]
collective-excitation spectra, in contrast to the s.p.
spectra considered in [2,7] and [30] in Sec.4.
Symmetry breaking due to fixing the angular
momentum projection K of the collective and s.p.
states in relation to the Gutzwiller periodic orbit (PO)
theory (POT) [40, 41] extended to arbitrary continuous
symmetries of the Hamiltonian [42 - 54] is discussed in
Sec. 5. The article is ended by a summary.

2. Two-neutron transfer reactions

To perform a statistical analysis of energy
spacings, one needs the complete and pure level
sequences. The completeness means absence of
missing and incorrectly identified energy levels. For
nuclear physics, this requirement is to use the levels
with a given angular momentum | and parity .
Additional quantum numbers can be considered in
some problems, for instance, the isospin T or the
angular momentum projection K to the symmetry
axis. For a statistical evidence the level sequences
should be enough long. These conditions are
satisfied in the spectra obtained by using the
reactions with a two neutron transfer. As an
example, see the proton-triton reaction spectrum for
the target **U at the angle 5° (Fig. 1).

The energy spectra were measured for 10 angles
in the range of 5 - 40 degrees and, thus, the angular
distributions for each excitation level were obtained
(Figs. 2 and 3). To get information on the angular
momenta | and parity = for the observed levels, the
angular distributions were analyzed by using the
coupled channel method through the program
CHUCK3 based on the distorted wave Born
approximation (DWBA). Multi-step calculations
include a two-neutron transfer and excitations in the
same nucleus (up to 8 ways). The initial aim of such
experiments was investigations of the nature of
multiple 0" excitations. Spectra of 2%, 4" and 6"
states were obtained as secondary information which
turned out to be useful in the present statistical
analysis.

Figs. 2 and 3 demonstrate the quality of experi-
mental results and of their analysis. The final results

of such study are shown in Fig. 4 for the **Th
nucleus. The energies, spins, parities and cross
sections for each level are determined. They are
combined for each given angular momentum.
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Fig. 1. Spectrum for the 23*U(p, t)%*2U reaction (in logarithmic scale) for a detection angle of 5°.
Most of the levels are labeled with their excitation energy in keV.
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Fig. 2. Angular distributions of assigned 0* states in 2%°Th and their fit
with CHUCKS3 one-step calculations. Dashed lines show fits for 1 states as possible alternative assignments.
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Fig. 3. Angular distributions of assigned 2* states in 2%2U and their fit
with CHUCKS calculations (labels yield excitation energies in keV).

In the framework of the problem under
consideration, it is important to have information on
the nature of states excited in a two-neutron transfer
reaction. It was shown that, at least, the 0%, 2, 4*
and 6" states are collective. Some of evidences of the
collective nature of these states are given below.

Theoretical calculations of the energies, cross
sections, and structure of the states excited in the
two-neutron transfer were carried out within the
framework of a quasiparticle-phonon model (QPM
[6]) and the interacting boson model (IBM [7]). Both
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models give the absolute cross sections which are
close to experimental ones. Fig.5 demonstrates
qualitatively good agreement of the experiment and
calculations in frame of the QPM on left and IBM
on right, see also [59]. Cumulative pictures of the
experimental and theoretical spectroscopic factors
are rather similar. As to the nature of these states, in
all the low-lying states, quadrupole phonons are
dominant with a relatively modest role of the
octupole phonons. The contribution of the latter
increases with the growing excitation energy.
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Fig. 4. Experimental distribution of the (p, t) strength integrated in the angle region 0°- 45° for 0, 2* and 4* states in 2Th.
The levels identified reliably are indicated by filled circles, and those identified tentatively are indicated by open ones.
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Fig. 5. Experimental increments of the (p, t) strength in 2°Th as compared to the QPM calculations (left). Comparison
between the experimental (p, t) strength for the 0* states in 22Th and the IBM calculation is given on right (c), the
experimental versus the computed cumulative sum of (p, t) strengths is given too.

The phenomenological IBM gives spectra of 07,
2%, and 4" states which are close to the experiment,
and their excitation cross sections, as well as the
ratios of reduced transition  probabilities
B(E1)/B(E2). For example, Fig. 5 (right) shows the
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experimental and calculated spectra of 0" states and
the experimental increment of the (p,t) strength in
comparison with the theoretical ones. It is quite
natural to expect that the IBM is adjusted to the
simplest phonon excitations and their satellites. In
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the structure of a part of the 0" states, in addition to
the sd-bosons, an important role plays also
pf-bosons. By other words, octupole excitations are
essential. Thus, the collective nature of states excited
in the (p, t)-reaction is confirmed in this model, too.

Another evidence of the collective nature of
states excited in the two-neutron transfer reaction is
rotational bands that can be built from the identified
states. After the assignment of spins to all excited
states, the sequences of states, which can be
distinguished, show the characteristics of a rotational
band structure. The states associated with rotational
bands were identified on the following conditions:

i) the angular distribution for a state as the band
member candidate is assigned by the DWBA
calculations for the spin, that can be necessary to put
into the band;

ii) the transfer cross section in the (p, t) reaction
to the states in the band has to be decreased with the
increasing spin;

iii) the energies of states in the band can be fitted
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approximately by the expression for a rotational band
E = Eo + Al(l + 1) with a Eo constant, and a small and
smooth variation of the inertial parameter A.

Collective bands identified in such a way are
shown in Fig. 6. Under the above criteria (i) - (iii),
the procedure can be justified for some sequences.
They are already known from gamma-spectroscopy
to belong to the rotational bands. The straight lines
in Fig. 6 strengthen the arguments for these
assignments.

Finally, multiplets of states are identified in the
actinide nuclei which can be treated as quadruplets
of one- and two-phonon octupole states. Since the
octupole degree of freedom plays an important role
in this mass region, such a result was expected
though the identification of the two-phonon octupole
quadruplet was obtained for the first time. Both
guadruplets are shown in Fig. 6 (right). The levels
excited in the two-neutron transfer reaction and
identified in the way above described are included
into the analysis of 623 states, see [32].
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Fig. 6. Collective bands based on the 0*, 2*, 4%, 1-, 2~ and 3~ excited states in 2°Th as assigned from the DWBA fit of
the angular distributions (like shown in Figs. 2 and 3) from the (p, t) reaction (left), and assumed multiplets of states of
the octupole one-phonon (bottom) and the octupole two-phonon (top) excitations associated with the corresponding
collective bands (right): Levels are labeled by the energy in keV, and o is the cross section in microbarns.

3. Theoretical approaches to NNSDs

Unfolding procedure. To compare properly the
statistical properties of different sequences to each
other, one should convert any set of the energy
levels into a set of the normalized spacing that can
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be done through the so-called unfolding procedure
[3, 16] and [32]. In this procedure the original
sequence of level energies E; is transformed to a new
dimensionless sequence ¢ (I =1, 2, ... ) numerate

the levels) as mapping
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g = NN(E|)9 (1)

where N(E) is a smooth part of the cumulative
level density,

N(E) =TdE'dN(E')/dE’, @)

with the level density dN(E)/dE. As shown in Fig. 7,
the cumulative density N(E) is the staircase function
that counts the number of states with energies less or
equal to E. Usually, a polynomial of not large order
is used to fit N(E). In Fig.7, testing the two
polynomials,

N(E) =a, +aFE +a,E? 3)
and
N(E)=a,+2a,E” +a,E", @

one finds small differences for the corresponding
fitting. In such a way, the spectra will be analyzed in
terms of the spacing between the unfolded energy
levels (1),
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Fig. 7. Histogram of the cumulative states’ numbers N(E)
and their fitting by two polynomials (4) (green dashed)
and (5) (red solid) for the 0*. (See color Figure on the
journal website.)

The NNSD is, then, the distribution of a probability
p(s) to find the number of unfolded levels AN in the
interval As. Notice that this unfolding procedure can
be avoided for calculations within  some
approximations to the short-correlation statistical
spectra [14, 15].

Analytical NNSD approximations. NNSDs p(s)
are defined as the probability distribution, i.e., the
probability to find a level between s and s + ds. As s

is the neighbor level distance, this NNSD is, first of
all, a quantitative measure of chaos and regularity
for close correlations. The spectral fluctuations are
not described respectively by Poisson and Wigner
(GOE) limits:

Pp(s) =exp(-s), Py (S) =%Sexp[—n7szj , (6)

i.e., the system is both not pure regular and nor pure
chaotic. Several theoretical NNSDs were suggested
for interpretations of the experimental NNSDs. The
most popular is, e.g., the Brody distribution [18, 23]

p(s) = A, (L+0)s’exp(-A;s™), ()

where g is a unique fitting parameter. The

normalization constant is given by

Ah=(1+q>[r[‘;—*+’iﬂ , ®)

where T'(x) is the Gamma function. In the limit
q — 0, one has the Poisson distribution p,(s) , and
for g —1 one finds the Wigner limit p,, (S) (6).

The new LWD approach is based on the
expression for NNSD p(s) within the Wigner -
Dyson theory [31, 32],

p(s) = ALémg(s)exp[— | ds'g(s')j, 9)

where g(s) is the repulsion level density, which is
assumed to be linear in s, as a smooth function of s,

g(s)=a+bs, (10)

a and b are fitting parameters, and A, is the
normalization constant. The latter can be expressed
analytically in terms of the error functions by using
the normalization conditions. This is the linear
Wigner - Dyson (LWD) two-parametric approach
[32]. The constants a and b can be related by the
normalization conditions keeping, however, the
guantitative measure of the separate Poisson and
Wigner contributions. In this case, one gets A, =1

and the one-parametric LWD distribution [33],
p(s) =[a(w) + b(w)s]exp[-a(w)s—b(w)s?/ 2], (11)
where

a(w) = ' wexp(w?)erfc(w),

b(w) = gexp(ZWZ) erfc?(w). (12)
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For the limit w—o (a—1 and b—0), one
obtains the Poisson distribution p.(s) while for
w—0 (a—0 and b—n/2), one arrives at the
Wigner distribution p,, (s), see (6).

Let us deal now with the two simplest billiard
systems as a standard test: spherical and heart
billiards, i.e. a system of independent particles
moving in a cavity potential where the regular and
chaotic behavior of classical trajectories takes place,
respectively. Solving the corresponding eigenvalue

problem, one can find the quantum spectrum and
study its statistical properties. The Orsay group
accumulated sequences of many (of the order of
1000) eigenvalues which belong to the eigen-
functions of the same symmetry (e.g., the same
angular momentum | and parity =). Numerical
calculations, as well as experiments, provide the
finite energy-level sequences of the whole spectrum
for a quantum system.

T L I . I - [ W I

Circle billiard
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num.

—LWD
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p(s)

Heard billiard

o4 Y veeee Poisson |  } +e-:- Wigner .
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S S s
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Fig. 8. NNSDs p(s) as functions of a dimensionless spacing variable s for (a) Poisson- and (b) Wigner-like numerical
calculations and (c) Wigner-like results (see text) by staircase lines. One-parametric LWD (11) is shown by solid lines.

Dots present the Poisson (a) and Wigner (b, c) (see Eq. 6).

Fig. 8 shows (very) good agreement between the
numerical calculations of the NNSDs p(s), Eq. (11),
within the Wigner - Dyson theory [32, 33] for the
circle (a) and heart (b) billiards as functions of the
spacing variable s (in dimensionless units of the
local energy level distances) as compared to the
Poisson regular and Wigner chaotic distributions,
respectively. In Fig. 8 (c) the nuclear data ensemble
(NDE), which includes 1726 neutron and proton
resonance energies, is found also in good agreement
with the Wigner distribution of Eq. (6). Fig.8
presents also good agreement of the one-parametric
LWD approximation (11) to the NNSD (9) with the
corresponding numerical (a, b) and experimental
NDE (c) distributions, along with their Poisson (a)
and Wigner (b, c) limits (6). Other cases of the
mixed order-chaos NNSDs are presented below in
Figs. 9 - 13.

4. Discussions of the results

Experimental NNSDs fitted by the LWD appro-
ximation for the collective states excited in several
rare-earth nuclei (12 nuclei, 128 states for energies
E<3MeV: a =043, b =0.77) and for ©*®Gd and
188Er (2 nuclei, 58 states for energies E < 4.5 MeV: a
= 0.82, b = 0.20) are shown in Fig. 9. As seen from
the comparison of (a) and (b) in Fig. 9, one finds an
intermediate chaos-order behavior between the
Wigner and Poisson limits (6). A shift of these
experimental and theoretical NNSDs from the
Wigner to Poisson contributions is clearly shown in
this figure from left to right, that is related to the
increasing of lengths of the collective energy
spectrum.

Rare earths 0* states

0.8

158Gd 168Er O* states

06l —— exp.
o~ | / —— LWD
N—r
7 1 N Beodr L N, 000 Pty
0.2 ~
0 I 1 1
0 1 2 3 0 1 2 3 4
S s
b

Fig. 9. Nearest neighbor spacing distributions p(s) (black solid staircase lines) as functions of the dimensionless spacing
variable s for 0* collective states and fits by the LWD (11) and the Brody (7) approach shown respectively by red solid
and blue dashed lines: for the energies E < 3 MeV in many rare nuclei (a) and for the energies E < 4.2 MeV in %8Gd
and %8Er nuclei (b). (See color Figure on the journal website.)
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Fig. 10 shows the NNSDs for actinides,
depending on the angular momentum | = 0"-6"
(4 nuclei, 438 states, namely 0" states: a = 0,32,
b =0.98; 2" states: a = 0.55, b = 0.59; 4" states:
a=0.67, b =0.41; 6" states: a = 0.41, b = 0.81). As
seen from Fig. 10, one finds a shift of the Wigner to
Poisson contributions with increasing the angular
momentum | from 0 to 4*. Then, this shift slightly
goes back to the Wigner limit because of missing
levels [60] due to very small cross-sections in the
two-neutron transfer-reaction experiments at 6*.

Fig. 11 shows the comparison of the experimental
and theoretical (QPM) NNSDs for the collective
states 0" in a few actinide nuclei ?*Th, #°Th and #*2U.
Experimental (a) and theoretical QPM (b) results are
presented for energies E < 3 MeV (a =0.36, b =0.91
and a = 0.49, b = 0.69, relatively) and theoretical
QPM (c) calculations for energies in a wider region
E<45MeV (a=0.72, b=0.33). This figure

indicates on completeness and collectivity of the used
spectra because of good agreement of NNSDs
between plots in (a) and (b). The comparison of (a, b)
with (c) confirms the general law of a shift of NNSDs
from the Wigner to the Poisson contribution with
increasing the total energy interval.

Cumulative distributions,

F(s)=[ds'p(s), (13)
0

are shown in Fig. 12 for actinides (4 nuclei, 438
states) [32]. As presented by this figure in (a - d), for
all the angular momenta the Wigner cumulative
distribution well reproduces the behavior of empiric
values at small spacing s while the Poisson
distribution is better fitted these data at larger s. A
good comparison of these data with LWD (11) and
Brody (7) NNSDs is shown in lower plots (e - h).
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Fig. 11. Comparison of NNSDs between the experimental data (a) and the theoretical QPM results (b) in the same
energy interval up to 3 MeV in #282%Th and 2%2U actinide nuclei, and those (c) up to 4.2 MeV. Other notations are the

same as in Figs. 9 and 10.
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Fig. 12. Cumulative distributions: upper line of plots (a) - (d) shows the comparison of the same experiment as in

Fig. 11 with Poisson and Wigner limits (6); the lower line of plots (e) - (h) presents the comparison with the LWD (11)
and Brody (7) approach.

5. Symmetry breaking and extended POT accounting also for a residue interaction), one can
try to explain this symmetry breaking phenomenon
by introducing a measure of the symmetry (or chaos)
as the number of the independent single-valued
integrals D of motion beyond the energy E. The
symmetry breaking phenomena in such a guantum
and classical particle system can be explained by
decreasing the number of single-valued integrals D.
We emphasize that there is an obvious relationship
between symmetries of the Hamiltonian used in
guantum and classical mechanics.

Fig. 13 shows the symmetry breaking pheno-
menon for the actinide nuclei with mixing all
projections K of the angular momentum 4 (a) and
fixing K = 0 (b), 2 (¢c) and 4 (d). As the angular
momentum projection K is fixed in (b - d), one
observes mainly a shift of the NNSDs to the chaotic
Wigner contribution, in agreement with the results
for the s.p. spectra [31]. For Hamiltonian systems
(with interactions through a mean field or
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Fig. 13. NNSDs for full spectrum (a) and symmetry breaking by fixed K = 0 (b), 2 (c) and 4 (d) projections of the
angular momentum 4* for the actinides which are included in Fig. 10; red solid and blue dashed lines are fits by the
LWD (11) and Brody (7) NNSDs, respectively. (See color Figure on the journal website.)
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In particular, in the mean-field approximation for
Hamiltonians with an axially symmetric potential,
one can take the degree of symmetry D as the same
number of the independent integrals of motion in both
the quantum and classical formulations [42, 43, 50 -
53]. A bridge between these two different classical
and guantum approaches is the semiclassical periodic-
orbit theory (POT) [40, 41] extended to continuous
symmetries [42 - 51]. Within the POT, D can be taken
as a number of the independent single-valued
parameters for a particle action constant at a given
system energy E. Assuming an existence of the only
one such a single-valued integral of motion - the
projection of the angular momentum K - for a
potential with the axial symmetry, one has D = 1.
Fixing the value of K = K, we transform our system to
a subsystem, due to a restriction in the phase space
coordinates r and p, K(r, p) = Ko, where there is no
axial symmetry and D = 0, that decreases respectively
the system symmetry (increases a chaoticity). The
system with only one single-valued integral of
motion, the energy E, is called completely chaotic
[41]. Thus, the degree of symmetry D is reduced by
one and one should expect respectively more a
chaoticity of the system.

Such a quantum-classical correspondence in the
symmetry breaking can be described transparently in
terms of the Poincare sections shown in Figs. 14 and

15— the final phase space coordinates (o",p; )

perpendicular to the symmetry axis z after many
periods of particle motion along the reference
periodic orbit (PO) starting from the initial point

(PP, [51,58]. In a completely integrable system,

all classical trajectories are POs, e.g., in the
harmonic oscillator with rational ratios of frequen-
cies [51, 43, 46]. In this completely degenerate case,
the symmetry parameter D is maximal and equal to
2n-2 for n degrees of freedom. This leads to a level
density as sum over PO families [46]. (Note that for
irrational ratios of frequencies, one can find
subsystems with smaller symmetry parameter
D =2n-3, 2n-4 and so on.) It is in contrast to the
opposite limit when the energy E is only one single-
valued integral of motion (D = 0) for a completely
non-integrable Hamiltonian. In this case, one has
fully a chaotic behavior of the motion along classical
trajectories and, relatively, a discrete sum over
isolated POs in the semiclassical density of quantum
states in the POT [40, 41, 51, 42 - 53, 54]. Fig. 14
obviously shows the increasing of chaos for the
transitions from the integrable spheroidal cavity to
the chaotic Hamiltonian systems with growing
Legendre polynomial index L and deformation
parameter o [58]. There is a manifestation of an
agreement between the classical and the quantum
chaos description for the same deterministic
Hamiltonian because of a bridge by the extended
semiclassical POT. Fig. 15 shows a shift to the
chaoticity with the fixed s.p. angular momentum
projection K as compared to all of mixed projections
in Fig. 14. This shift is enhanced much with
increasing the deformation of the system . Thus,
the symmetry breaking phenomena in a particle
system for a given Hamiltonian with a potential,
depending on a parameter like the deformation
parameter o, can be described quantitatively by the
degree of symmetry (chaos) D [42 - 54].

=0
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Fig. 14. Poincare sections p,vp(Vp = pp/m) is the velocity perpendicular to the symmetry axis and m the mass of particle for
spheroidal (SPH) cavity and 5 axially-symmetric shapes r=R[1+oP,_(cos3)] of the Woods - Saxon potential surface

with indices L = 2, 3, 4, 5 of the Legendre polynomials P_(cos9) in the spherical coordinates r,3,¢ by accounting for all
projections of the angular momenta K; a = 0.005 in the two lower lines and a = 0.4 for two upper lines.
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02 0406 08
p

Fig. 15. The same as in Fig. 14 but for the fixed projection of the angular momentum K = 0;
two upper lines: a = 0.005; two last lines: a = 0.4.

In the case of the symmetry restoration, one has
also to mention the bifurcations [52 -54, 46] as
catastrophe values of the deformation parameter a in
Fig. 14. This shift is growing with increasing the
system deformation a, where one solution of the
classical Hamiltonian equations is transformed to the
two solutions with a local increase of the symmetry
parameter D and, therefore, with a local shift to a
regular behavior. In the opposite — symmetry breaking
— case, one of such parameters is fixed, e.g., the
projection of the angular momentum K in a band of
the collective states with a given total angular
momentum | and parity =. This restriction of the phase
space should lead to a local increasing of chaos with
respect to the order behavior [31] due to a local loss of
the Hamiltonian symmetry. As seen from comparison
between the Poincare sections of Figs. 14 with all
values of K and Fig. 15 with a fixed K = 0 for a given
polynomial P_ and deformation a, the Poincare
sections become obviously more chaotic than those
with accounting for all the angular momentum
projections K (see Fig. 14), i.e., the chaoticity measure
increases with fixed K. Note also that, as expected, the
chaoticity is enhanced with non-integrabity and
complexity of the shapes. For strongly deformed
actinide nuclei (see Fig. 13), one finds a good
guantum number K and rather a pure sequence of the
rotational bands. However, it might be not the case for
other complex systems for which K is not a good
guantum number. We are planning to work out such
more complicate situations in a forthcoming paper.

122

6. Summary

The statistical analysis of the spectra of collective
states in the deformed rare and actinide nuclei has
been presented. The experimental data obtained
from the two-neutron transfer reactions are
discussed. The new method of the analysis of
distributions of spacing intervals between the nearest
neighbor levels (NNSDs) is suggested. This method
has obvious advantages above the popular Brody
method as giving the separate Wigner and Poisson
contributions into the statistics of quantum spectra.
Our LWD NNSDs can be also derived properly
within the Wigner - Dyson theory, in contrast to the
heuristic Brody approach. We found an intermediate
behavior between the order and chaos in structures
of quantum spectra of the collective states in terms
of the Poisson and Wigner contributions. We
observed a shift of NNSDs to the Poisson
contributions with increasing the energy interval of
these spectra and the angular momenta, that is in
agreement with the random-matrix theory results.
Statistical analysis of the cumulative distributions
yields a relative role of the order and chaos
depending on the spacing variable S. The
symmetry-breaking effect with fixing the angular
momentum projection K leads to a shift of the
NNSDs to a more chaotic behavior (larger Wigner
contribution). It is a general property for the
collective and s.p. states. The quantitative measure
of the chaoticity can be the symmetry degree D. In
the mean field approximation, one can specify this
measure within the extended semiclassical POT.
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This work might be helpful for understanding the
order-chaos transitions in the collective spectra of
strongly deformed nuclei. As perspectives, we are
planning to study more properly and systematically
the statistical short- and long-range correlation
properties of the nuclear collective states. The most
attractive subject in these studies is the symmetry-
breaking phenomena.
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PEAKIIIi IBOHEMTPOHHOI ITEPEJIAYUI
TA MIPA KBAHTOBOI'O XAOCY SIJIEPHUX CIIEKTPIB

[TporoHyeMO HOBY CTaTUCTUYHY IHTEPIIPETALilO SACPHUX KOJIEKTHBHUX CTaHIB, sIki OyJM HEIIOJaBHO 3HaW/EH] y
JBOHEHTPOHHHUX pEAKLisIX Hepenadi 3 PiAKICHUMHU 3€MJISIMH Ta aKTHHIIHAMH SIpaMH, 1 3aCTOCYBaHHS 1O iXHBOTO
aHaizy po3mnoxiniB HaiOmmwkunx cycigHix piBHiB (PHCP). Otpumano excrnepumentansHi PHCP 3 BukopucraHHsM
MOBHUX Ta YHUCTHX MOCIIJOBHOCTEH KOJEKTMBHUX CTaHIB 4epe3 mpouenaypy aHdoiuiHra. 3HaiijieHO, IO peakii
JIBOHEHTPOHHOT Tepeaadi JO3BOJISIOTE OTPUMATH TaKy MOCIIIOBHICTh KOJEKTHBHHUX CTaHIB, IO 33J0BOJIbHSAE BUMOTaM
CTaTUCTHYHOTO aHami3y. TeopeTnunuil aHai3 6a3yeThCs Ha JIiHIHHOMY HAOIDKEHHI TYCTHHH BiIITOBXYBAaHHS PIiBHIB y
Teopii Birnepa - laticona. lle HaOmmKkeHHS mae 3MOTy OOYHCINTH OKPEMO BHECKH BITHEPOBCHKOTO Xaocy Ta
ITyacCOHIBCHKOTO TOPAAKY. 3HalaeHo mpoMixHy mnoBeminky PHPC wmik rpanmuHmMm posmonitamMu Biraepa Ta
[Iyaccona. BusiBngerscs, mo PHPC 3cyBaeTbes Bifg Xxaocy 10 MOPSAKY 31 3pOCTaHHSAM JOBXKHHHU CIIEKTPIB 1 KyTOBOTO
MOMEHTY KOJEKTUBHUX CTaHIB. B sKOCTI MEPCHEKTUB CTATHCTUYHOIO aHaji3y OOrOBOPIOETHCS MOPYLIEHHS CHMETpil
craHiB npu (ikcauii npoexuii KyroBoro MoMeHTy K, 30KpeMa y 3B’s3Ky 3 y3araJbHEHOI KBa3iKJIaCHYHOIO TEOPI€ro
nepiognYHuX OpoiT.

Kniouosi cnoea: cratucTWuHWA aHANi3, SACPHI KOJICKTUBHI CTaHW, KBAHTOBHH 1 KJIIACHYHUH XaocC, PO3MOILI
HaHOJIMKYIMX CYCIAHIX piBHIB, po3nozinu Biraepa Ta [lyaccona.
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PEAKIIUM JBYXHEWTPOHHOU TEPEJAYH
1 MEPA KBAHTOBOT'O XAOCA SIIEPHBIX CIIEKTPOB

[IpemnaraemM HOBYIO CTaTUCTHYECKYIO HHTEPIIPETAINIO SACPHBIX KOJUIEKTUBHBIX COCTOSTHUH, HEaBHO TOIYICHHBIX
B pCaKuAax HByXHeﬁTpOHHOﬁ nepeaayn ¢ peaAKMMu 3€eMJISIMA 1 aKTUHUAHBIMU s JipaMy, U IPUMEHCHUEC K UX aHaJIM3y
pactpenenenuii Ommkaimmx cocennux ypouei (PBCY). ITomydens! skcnepumentanbibie PBCY ¢ ucnons3oBanuem
MOJTHBIX W YHCTBIX TOCIIEOBATEIILHOCTEH KOJUIGKTUBHBIX SIICPHBIX COCTOSHHUIM depe3 Mpolenypy aH(pOIIHHTA.
HatineHo, 4yTo peaknuu JBYXHEUTPOHHOH Tepeadyn MO3BOJISIOT MOMYYHUTh TaKYIO MOCIEI0BATEIEHOCT KOJICKTHBHBIX
COCTOSIHUH, KOTOpas YJOBJICTBOPSET TPECOOBAHHUSM CTATHCTHUYCCKOTO aHAN3a. TEeOpEeTHUCCKUI aHAINU3 OCHOBBIBACTCS
Ha JTHUHEHHOM NPHUOIMKEHUH TIOTHOCTH PACTalKWBaHUS ypoBHeH B Teopuu BurHepa - JlaficoHa. D10 mpuOmmKkeHne
MTO3BOJISICT PACCUMTATH OTIENBEHO BKJIAIBI BUTHEPOBCKOTO Xa0ca M IIyacCOHOBCKOTO mopsaka. OkaspiBaercs, uro PBCY
CHBHTAIOTCA OT Xaoca K TOPSIKY C POCTOM IJIMHBEI CIIEKTPOB W YTJIIOBOTO MOMEHTa KOJIICKTHBHBIX COCTOSIHHH.
OO6cyXIaroTcs TEpCIeKTUBBl HCCICIOBAHMS HApyIICHUS CHUMMETPHUH TPH (UKCHPOBAHHON MPOCKIMH YTIIOBOTO
MomeHTa K, B 4aCTHOCTH B CBSI3U C 00mIel KBa3UKIACCHYECKON Teoprell MeprHoANnIecKUX OpOuT.

Kniouesvie crnosa: craTuctuaeckuil aHaIm3, siACPHBIE KOJUIEKTUBHBIE COCTOSIHUS, KBAHTOBBIM M KIIACCHYECKUH Xaoc,
pacnpeneneHye OmmKalIImx coceTHUX ypoBHEH, pacnipenenenus Burnepa u [lyaccona.
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