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ADVANTAGE OF A DYNAMICAL (B/Gd) NEUTRON BEAM CANCER THERAPY 
OVER A STATIONARY THERAPY 

 

This communication reports on a demonstration that a dynamical neutron beam is superior, in penetrating the sur-
face of a (B/Gd)-loaded cancerous region, to a stationary neutron beam of the same intensity. The reported analysis of 
this complex problem is based on a one-group neutron diffusion theory with a periodic external neutron beam source in 
a one-dimensional geometry. 
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1. Problem formulation 
 

The idea of dynamical neutron cancer therapy in a 
composite-cancerous region [1, 2], has been dormant 
as a subject of theoretical physics since 2002. This 
idea has however started recently [3] to be put into 
practice, when a time-modulated neutron beam was 

suggested to function with a variable frequency , 
which serves as a control variable, in a nonlinear op-
timization process that may extremize some quality 
indices for this therapy. An optimization process that 
has recently been extended [4], to the case of dyna-
mical cancer therapy by two opposing neutron beams. 

Stationary beams of slow neutrons, produced by 
reactor sources or accelerators, provide a basis for 
neutron cancer therapy (NCT), BNCT [5, 6] and/or 
GdNCT [7]. The beams can, these days, be directed 
onto malignant tissues, through healthy tissues,  
using collimators, hollow neutron guides [8] or pos-
sibly by solid neutron fibers. These beams can also 
be dynamic, i.e. temporally modulated by an accel-
erator. To introduce the subject, consider a space-

time thermal neutron flux ( ),x t  distribution in a B 

and/or Gd loaded cancerous region R of a thin slab 
shape, of one-dimensional thickness a, adjacent to a 

tumor-free region . The diffusion equation for such 
a flux of one-speed, v, neutrons is known to be 
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where ( ) ( ), ,x t vN x t =  and N(x, t) is the neutron 

density and 0- is the limit to 0 from the left. 
In the notation of the classical literature on reactor 

engineering, see e.g. [9 - 11], a is the macroscopic 
absorption cross-section of these neutrons in R and D 
is the corresponding diffusion coefficient. The point 
x = 0 shall be the point of the source application,  
x = a is the physical boundary of the slab R, 

while x = l shall be the extrapolated boundary [9 - 
11], of R. The source term S(x, t) in (1) is assumed to 
be discontinuous in x and to emerge from a modera-
tor mounted on an accelerator target that can be 
modulated in time. The thermal neutron beam is then 
transported by a system of hollow neutron guides or 

solid neutron fibers in the region , as illustrated in 
the Figure. In particular 

 

 
( ) 0

1

     /2    cos ωt;      0 ,
( , )

0; 0

m
m

S t a a m x
S x t

x


−

=


= + =

= 
 


 (2) 

 

where S(t) is designed as a periodic function, with a 

period P, of even symmetry (for the sake of sim-

plicity) with a time modulation frequency ω = 2π/P, 

which can be varied, within technical limits, by the 

accelerator operator. 

Such a model for the neutron source assumes that 

even before the source modulation starts at t = 0, a 

steady-state source (stationary mode) exists with a 

level equaling to a0/2. This situation is a mathemati-

cal reality when using Fourier series representations, 

which can practically be achieved by a special de-

sign of operating the accelerator neutron beam. 

A time-modulated thermal neutron beam S(t) 

with a mean level of a0/2 happens to generate a neu-

tron density wave, see e.g. Haidar [3], that is 

claimed to penetrate the surface of a B/Gd-loaded 

finite cancerous region better than a stationary neu-

tron beam of the same S = a0/2 level. The purpose of 

this letter is just to demonstrate that this claim is 

correct. 

It is further anticipated that the deployed accele-

rator can generate repeated pulses of fast neutrons 

Sf(t) at xα of pulse width δ in the range of 10 μs < δ < 

< 1000 μs. At the end of the moderator, i.e. at xβ, the 

thermal neutron source becomes ST(t), as sketched in 

the Figure. 
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Sketch to illustrate the accelerator based single dynamical neutron beam. 

 

After transportation through , this same source 

of thermal neutrons emerges at x = 0 with a reduced 

amplitude as S(t). The width  of the resulting peak 

in this S(t), though proportional to δ, is orders of 

magnitude larger than δ, see e.g. [12] and [13]. 

If T₀ is the lifetime of thermal neutrons in R, then 

therapy in reasonable times requires P to exceed T₀. 
Hence T₀ < P << ∞ i.e. 

 

 (2π/T₀) > ω >> 0, (3) 
 

seems to be a necessary technical constraint in any 

dynamical NCT. 
 

2. Analyses 
 

It would be assumed throughout this article, that 

the neutron flux intensity J(x, t) at x = 0⁻ should 

satisfy 
 

 J(0⁻, t) = R;Λ S(x, t), (4) 
 

where R;Λ is a coupling factor between R and the 

adjacent Λ region. 

This may be taken to be  
 

 R;Λ = Λ/(R + Λ), (5)  
 

with R and Λ as the albedo (see, e.g. [14]) for Λ 

and R respectively. To simplify notation, we shall 

throughout assume 
 

 åm = R;Λ am, m = 0, 1, 2, 3 ... (6) 
 

to consider first a steady-state neutron diffusional 

process generated only by the stationary term (m = 0 

mode) of an acting Neumann boundary condition 

(BC). This is the natural boundary condition corres-

ponding to the stationary m = 0 mode, implying that 

a steady-state source exists with a level equaling to  

Ṧ = å0/2, even before the source modulation starts at 

t = 0.  

Since a/D > 0, then we set μ2 = a/D to obtain 
for the case of Ṧ = å0/2 the stationary boundary value 
problem (BVP) solution [3], 

 

 Nγ(x) = (å0/(2Dvμ))∙(sinhμ(l-x))/(coshμl)). (7) 
 

Clearly Nγ(0) = (å0/(2Dvμ)) tanhμl, while Nγ(l) = 0. 
Consider next a dynamical modal BVP for the 

differential equation (1), with each m-mode in S(x, t) 

of (2), generating a modal flux ( ),m x t  subject to: 

(i) ( ), 0,m l t =  

(ii) ( ) ( )( / )  , 0    å / D cosm t,m mx x t x   = = −   

(iii) ( ),0m x  = φm(x); φ0(x) = Nγ(x), φm(x) = 0, 

∀m ≥1. 
Assume further that 
 

 βn = vD(2n − 1)²(π²/4l²) + va, (8) 
 

and 

 Qn(x) = cos(2n − 1)(π/2)(x/l), (9) 
 

to obtain an analytical solution ( ),N x t =  

( )
1

, /m
m

x t v


=

=   to the previous BVP’s, which hap-

pens remarkably to be decomposable [3], into three 
superimposed distinct effects viz 
 

 N(x, t) = Nρ(x, t) + Nσ(x, t) + Nγ(x), (10) 
 

where Nρ(x, t) is periodic “dispersive”, Nσ(x, t) is 
dissipative and Nγ(x) is stationary. These are namely: 
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and Nγ(x) is the same as (7). 
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To perform a reasonable comparison between 

(10) and (7), consider the simplest possible form for 

S(t), that is a periodically recurring impulse of dura-

tion σ, with amplitude h, which can be defined over 

one period P = 2T by 
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The pertaining 
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generates the line spectrum 
 

 ( ) ( ) ,a 2 / / 2m h Sinc m=      (14) 
 

for which a0 = (h/π)σω, a1 = (h/π)σω Sinc (σ/2)ω,  

a2 = (h/π)σω Sinc σω, etc. For any value of ω, the 

first zero of this spectrum occurs when (σ/2)ωm = 

= 2.6, i.e. when 
 

 m = 5.2/σω. (15) 
 

3. Results  
 

Hence if in relation (10) it is desired to truncate 

m above 1 = M, then it is required to consider in (15) 

m = 2, and this means a design ω satisfying 
 

 ω = 2.6/σ, (16) 
 

for which 
 

a0 = 2.6 (h/π), 
 

a1 = aM = 2.6 (h/π)σω Sinc 1.3 = 1.407 (h/π), 
 

 a2 = 0,     a3 < 0, (17) 
 

and am is oscillatory for m ≥ 3. If we additionally 

truncate n above 3 = N, then (10) takes the form 
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with å1 = R;Λ a1 and å0 = R;Λ a0. Further substitution of (16) - (17) in (18) leads to 
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Moreover, consideration of 
 

 Cn = σβn/(σ²βn² + (2.6)²), (20) 
 

in (19) allows for rewriting it as 
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with the trigonometric functions representing a non-

symmetric periodic time signal of period 
 

 
2

  .
2.6


 =   (22) 

 

Now we can directly analyze relation (21) for 

some characteristic time moments, starting with  

t = 0, for which 

 N(x, 0) – Nγ(0) ≈ 0. (23) 
 

For t = σ and rather small σ, we may consider 
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which is a positive quantity (especially for small βn) 
multiplied by a, concave in x, Qn(x) function. 

Then asymptotically as t→∞, i.e. when e 0,nt− →  

if t = ∞ is replaced, for definiteness, by t = ∞τ, then 

( ) ( ) ( ) ,
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( ),n nC Q x  appears also not to be insignificant. 

Since β₁ < β₂ < β₃, then the first term in (19) is 

the most dominant term, with Q1(x) = cos(π/2)(x/l), 

as a concave function with a peak at x = 0 and a 

node at x = l. The second term (less significant) is 

with Q₂(x) = cos3(π/2)(x/l), which is also concave 

between its peak at x = 0 and its first node at x = l/3. 

It becomes however negative over the (l/3, l) inter-

val. Then the third term (the least significant) is with 

Q3(x) = cos5(π/2)(x/l), which is also concave be-

tween its peak at x = 0 and its first node at x = l/5. It 

is also negative over the (l/5, l) interval. 

Clearly, ( ),N x t  for t > 0 is a superposition of 

the above three concave functions over the Nγ(x) 

convex function having a minimum at x = l. Moreo-

ver, ( ),N x t  > Nγ(x) at least for 0 < x < l/5. Moreo-

ver, approximately quantitatively, for 0 < x < l/5, 

[ ( ),N x t  − Nγ(x)] ~ hl³/(va)², and is practically 

independent of σ, when ω = 2.6/σ. This difference is 

traded off by the possibility for ( ),N x t  < Nγ(x) for 

l/5 < x < l. We may conclude therefore that a dyna-

mic neutron beam has a superior penetration, of the 

surface of a cancerous region, to a static neutron 

beam of the same intensity. Deep inside the cancer-

ous region, however, the situation is qualitatively 

reversed, but with slower spatial variation though. 

This fact motivates and justifies the argument for 

dynamical cancer therapy with two opposing neu-

tron beams [15], or with three mutually orthogonal 

neutron beams [16]. Furthermore, it should be noted 

that this neutronic behavior happens to be consistent 

with the existence of an optimal [4], beam frequency 

that extremizes the utility and ballistic therapeutic 

indices [3, 4], of the dynamical neutron flux. 
 

4. Conclusion 
 

In conclusion, this letter demonstrates in the sim-

plest possible way, a widely incomprehensible rea-

son for enhancing neutron spatial penetration by 

temporal modulation. The mechanism is indeed that 

of a neutron-density wave. A neutron-density wave 

[3, 16], though similar to an acoustic wave, is entire-

ly different from it. An acoustic wave is essentially 

an eigensolution to a homogeneous hyperbolic PDE, 

whereas a neutron-density wave is a Duhammel's 

solution to a nonhomogeneous parabolic PDE, with 

exclusively a harmonic external source. 
 

I am grateful to an anonymous referee for his 

critical reading of the original transcript and for 

pointing out several recent references related to this 

title. 
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ПЕРЕВАГА ДИНАМІЧНОЇ (B/Gd) НЕЙТРОННОЇ ТЕРАПІЇ РАКУ 

НАД СТАЦІОНАРНОЮ ТЕРАПІЄЮ 
 

Демонструється перевага динамічного нейтронного пучка над стаціонарним пучком нейтронів тієї ж 

інтенсивності при проникненні в онкологічну область, завантажену бором та/або гадолінієм (B/Gd). 

Проведений аналіз цієї складної проблеми ґрунтується на одногруповій теорії нейтронної дифузії з 

періодичним зовнішнім пучком нейтронів в одновимірній геометрії. 
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НАД СТАЦИОНАРНОЙ ТЕРАПИЕЙ 
 

Демонстрируется преимущество динамического нейтронного пучка над стационарным пучком нейтронов 

той же интенсивности при проникновении в онкологическую область, загруженную бором и/или гадолинием 
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