SINEPHA ®I3VKA TA EHEPTETHUKA / NUCL. PHYS. AT. ENERGY 21 (2020) 101-105
TEXHIKA TA METOJAU EKCHHEPUMEHTY

ISSN 1818-331X

ENGINEERING AND METHODS OF EXPERIMENT

YK 615.849.12+539.125.52

https://doi.org/10.15407/jnpae2020.01.101

Nassar H. S. Haidar*

Center for Research in Applied Mathematics and Statistics,
Arts, Sciences and Technology University in Lebanon, Beirut, Lebanon

*Corresponding author: nhaidar@suffolk.edu

ADVANTAGE OF ADYNAMICAL (B/Gd) NEUTRON BEAM CANCER THERAPY
OVER A STATIONARY THERAPY

This communication reports on a demonstration that a dynamical neutron beam is superior, in penetrating the sur-
face of a (B/Gd)-loaded cancerous region, to a stationary neutron beam of the same intensity. The reported analysis of
this complex problem is based on a one-group neutron diffusion theory with a periodic external neutron beam source in

a one-dimensional geometry.
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1. Problem formulation

The idea of dynamical neutron cancer therapy in a
composite-cancerous region [1, 2], has been dormant
as a subject of theoretical physics since 2002. This
idea has however started recently [3] to be put into
practice, when a time-modulated neutron beam was
suggested to function with a variable frequency o,
which serves as a control variable, in a nonlinear op-
timization process that may extremize some quality
indices for this therapy. An optimization process that
has recently been extended [4], to the case of dyna-
mical cancer therapy by two opposing neutron beams.

Stationary beams of slow neutrons, produced by
reactor sources or accelerators, provide a basis for
neutron cancer therapy (NCT), BNCT [5, 6] and/or
GANCT [7]. The beams can, these days, be directed
onto malignant tissues, through healthy tissues,
using collimators, hollow neutron guides [8] or pos-
sibly by solid neutron fibers. These beams can also
be dynamic, i.e. temporally modulated by an accel-
erator. To introduce the subject, consider a space-

time thermal neutron flux ¢(x,t) distribution in a B

and/or Gd loaded cancerous region R of a thin slab
shape, of one-dimensional thickness a, adjacent to a
tumor-free region A. The diffusion equation for such
a flux of one-speed, v, neutrons is known to be

10 o
Va(b(x, t) - qu)(x, t) +Z,0(x, t) = S(x, 1),

0 < x<I, 1)

where ¢(x,t)=VN(x,t) and N(x, t) is the neutron

density and 0 is the limit to 0 from the left.

In the notation of the classical literature on reactor
engineering, see e.g. [9 - 11], X, is the macroscopic
absorption cross-section of these neutrons in R and D
is the corresponding diffusion coefficient. The point
x =0 shall be the point of the source application,
x=a is the physical boundary of the slab R,

while x = I shall be the extrapolated boundary [9 -
11], of R. The source term S(x, t) in (1) is assumed to
be discontinuous in x and to emerge from a modera-
tor mounted on an accelerator target that can be
modulated in time. The thermal neutron beam is then
transported by a system of hollow neutron guides or
solid neutron fibers in the region A, as illustrated in
the Figure. In particular

S(t)=a, /2 wa cosmmt; Xx=07,
S(x,t) = | > (1) 3 12+ 2 n coSMO 2)

0 x>0

where S(t) is designed as a periodic function, with a
period P, of even symmetry (for the sake of sim-
plicity) with a time modulation frequency o = 2n/P,
which can be varied, within technical limits, by the
accelerator operator.

Such a model for the neutron source assumes that
even before the source modulation starts at t=0, a
steady-state source (stationary mode) exists with a
level equaling to ag/2. This situation is a mathemati-
cal reality when using Fourier series representations,
which can practically be achieved by a special de-
sign of operating the accelerator neutron beam.

A time-modulated thermal neutron beam S(t)
with a mean level of ag/2 happens to generate a neu-
tron density wave, see e.g. Haidar [3], that is
claimed to penetrate the surface of a B/Gd-loaded
finite cancerous region better than a stationary neu-
tron beam of the same S = ao/2 level. The purpose of
this letter is just to demonstrate that this claim is
correct.

It is further anticipated that the deployed accele-
rator can generate repeated pulses of fast neutrons
Si(t) at x, of pulse width & in the range of 10 us <8 <
<1000 ps. At the end of the moderator, i.e. at xg, the
thermal neutron source becomes Sr(t), as sketched in
the Figure.
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Sketch to illustrate the accelerator based single dynamical neutron beam.

After transportation through A, this same source  ponding to the stationary m = 0 mode, implying that
of thermal neutrons emerges at x = 0 with a reduced  a steady-state source exists with a level equaling to
amplitude as S(t). The width A of the resulting peak S = 40/2, even before the source modulation starts at
in this S(t), though proportional to 6, is orders of t=0.
magnitude larger than §, see e.g. [12] and [13]. Since Zo/D > 0, then we set p”= Xo/D to obtain

If T, is the lifetime of thermal neutrons in R, then ~ for the case of 5= &0/2 the stationary boundary value
therapy in reasonable times requires P to exceed T,.  Problem (BVP) solution [3],

Hence To <P <<wi.e. N,(X) = (80/(2Dvp))-(sinhp(1-X))/(coshul)). ~ (7)

(2n/To) > ©>> 0, (3)  Clearly N,(0) = (4/(2Dvp)) tanhpl, while N,(I) = 0.
Consider next a dynamical modal BVP for the
differential equation (1), with each m-mode in S(x, t)

of (2), generating a modal flux ¢, (X, t) subject to:

seems to be a necessary technical constraint in any
dynamical NCT.

2. Analyses

(i) o (1) =0,
It would be asgumed_ throughout this arti_cle, that (ii) (8(/ 5X))¢m (x,t)|x=0=— (&, /D)cosmat,
the neutron flux intensity J(x, t) at x = 0~ should
satisfy (i) & (%,0) = on(X); Go(x) = Ny(x), om(x) = 0,
_ vm >1.
(07, ) = Kria S(X, 1), 4) Assume further that
where kr:a IS @ coupling factor between R and the Bn=VvD(2n — 1)X(n?/41?) + VZa, (8)
adjacent A region.
This may be taken to be and
Qn(x) = cos(2n — 1)(w/2)(x/), 9
A= +
Kioa = pallprt pa) ©) to obtain an analytical solution N(x,t)=
with pr and pa as the albedo (see, e.g. [14]) for A "
and R respectively. To simplify notation, we shall ~ =%"¢, (x,t)/v to the previous BVP’s, which hap-
throughout assume m=1

pens remarkably to be decomposable [3], into three
m=xraamm=0,1,2,3 ... (6)  superimposed distinct effects viz

to consider first a steady-state neutron diffusional _
process generated only by the stationary term (m =0 N ) = No(x, 1) + No(X, 1) + Ny(X), (10)

mode) of an acting Neumann boundary condition where N,(x, t) is periodic “dispersive”, No(x, ) is
(BC). This is the natural boundary condition corres-  dissipative and N,(x) is stationary. These are namely:

N, (x, 1) =(2/1) iémi[{ﬁn cosmat + masinmot }/ (Bﬁ +m2m2)]Qn(X), (11)
m=1 n=l
N_(x, ) =—(2/1) T4, i[ﬁn /(B2 +mea?) [e7Q, (), (12)
m=1 n=l

and N,(x) is the same as (7).
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To perform a reasonable comparison between
(10) and (7), consider the simplest possible form for
S(t), that is a periodically recurring impulse of dura-
tion o, with amplitude h, which can be defined over
one period P = 2T by

hi—oc/2<t<cl/2

S(t)=<0;-T <t<-0c/2
0;0/2<t<T

(13)

The pertaining

.
a, =(2/T)[S(t) cos mot dt =

0

c/2

=(2h/x) | cos mot dt
0
generates the line spectrum
a, =(2h/n)ow Sinc(c/2)em, (14)

for which a, = (h/m)ow, a1 = (h/m)oo Sinc (6/2)w, |

3

a, = (h/m)ow Sinc cw, etc. For any value of o, the
first zero of this spectrum occurs when (o/2)mm =
= 2.6, i.e. when

m=5.2/cm. (15)
3. Results

Hence if in relation (10) it is desired to truncate
m above 1 = M, then it is required to consider in (15)
m = 2, and this means a design o satisfying

o = 2.6/c, (16)
for which
ao = 2.6 (h/n),
a; = am = 2.6 (h/m)ow Sinc 1.3 = 1.407 (h/n),
d = 0, az < 0, (17)

and an is oscillatory for m > 3. If we additionally
truncate n above 3 = N, then (10) takes the form

N(x t)=(2/1)& > [{Bncosmmt +masinmet | — Be ™" t]/ (an +o’ )]Qn (x)+N, (x), (18)
n=1
with 41 = kgr:a a1 and 4o = Kr:a 0. Further substitution of (16) - (17) in (18) leads to
N (x,t) ~(2.814/ 1) kg (ch /1) x
3
xS ({cﬁn [cos(26/0)t— e |+26sin(26/)t}/ (7,2 +(2.6)2)) x
n=1
xQy (X)+ N, (x). (19)
Moreover, consideration of N(x, 0) — N,(0) = 0. (23)
Cn = oBul(c?Bi + (2.6)), (20) For t = ¢ and rather small 5, we may consider
. . 1
o _ ~
in (19) allows for rewriting it as e =1-B,o, together with sin2.6~ 5 and
3 3 .
N (x, )= N, (t)~ 2.814 ken Y 0s2.6 ~ - to arrive at
T n=1
2.814 3
N(x,6)—N_ (o) ~ Kg.
C, [cosﬁt + 28 in 28, —e‘ﬁ"t}Qn (x) (21) ! T R'AE
c opn c

with the trigonometric functions representing a non-
symmetric periodic time signal of period

(22)

Now we can directly analyze relation (21) for
some characteristic time moments, starting with
t =0, for which

ISSN 1818-331X SAJEPHA ®I3KA TA EHEPTETUKA 2020 T.21 Nel

which is a positive quantity (especially for small By)
multiplied by a, concave in x, Qn(x) function.

Then asymptotically as t—oo, i.e. when e ™ — 0,
if t = oo is replaced, for definiteness, by t = cot, then

COSE(OO):COSE(OOT):COSOO(ZTC):1s is paired
(e} (e}
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. 26 . 26 -
to _ = _ = 2 :0.
sin=— (00) = sin . (c0t) = sinoo(2m)
3
Consequently, N(x,00)—N, (o)~ 2814 Kpa D,
T n=1

C,Q, (x), appears also not to be insignificant.

Since By < B, < Bz, then the first term in (19) is
the most dominant term, with Q1(X) = cos(w/2)(X/I),
as a concave function with a peak at x = 0 and a
node at x = I. The second term (less significant) is
with Q2(x) = cos3(n/2)(x/l), which is also concave
between its peak at x = 0 and its first node at x = I/3.
It becomes however negative over the (1/3, I) inter-
val. Then the third term (the least significant) is with
Qs(x) = cosb(n/2)(x/), which is also concave be-
tween its peak at x = 0 and its first node at x = I/5. It
is also negative over the (1/5, I) interval.

Clearly, N(x,t) for t > 0 is a superposition of

the above three concave functions over the N,(x)
convex function having a minimum at x = I. Moreo-
ver, N (x,t) > Ny(x) at least for 0 < x < I/5. Moreo-
ver, approximately quantitatively, for 0 < x < I/5,
[N(x,t) — NX)] ~ hP/(vZa)?, and is practically
independent of o, when @ = 2.6/c. This difference is
traded off by the possibility for N (x,t) < N(x) for
I/5 < x < |. We may conclude therefore that a dyna-

mic neutron beam has a superior penetration, of the
surface of a cancerous region, to a static neutron

beam of the same intensity. Deep inside the cancer-
ous region, however, the situation is qualitatively
reversed, but with slower spatial variation though.
This fact motivates and justifies the argument for
dynamical cancer therapy with two opposing neu-
tron beams [15], or with three mutually orthogonal
neutron beams [16]. Furthermore, it should be noted
that this neutronic behavior happens to be consistent
with the existence of an optimal [4], beam frequency
that extremizes the utility and ballistic therapeutic
indices [3, 4], of the dynamical neutron flux.

4. Conclusion

In conclusion, this letter demonstrates in the sim-
plest possible way, a widely incomprehensible rea-
son for enhancing neutron spatial penetration by
temporal modulation. The mechanism is indeed that
of a neutron-density wave. A neutron-density wave
[3, 16], though similar to an acoustic wave, is entire-
ly different from it. An acoustic wave is essentially
an eigensolution to a homogeneous hyperbolic PDE,
whereas a neutron-density wave is a Duhammel's
solution to a nonhomogeneous parabolic PDE, with
exclusively a harmonic external source.

I am grateful to an anonymous referee for his
critical reading of the original transcript and for
pointing out several recent references related to this
title.
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MEPEBAT A JIMHAMIYHOI (B/Gd) HEUTPOHHOI TEPAIIIi PAKY
HAJI CTAIIIOHAPHOIO TEPAIIIEIO

JleMOHCTpy€EThCS TepeBara JHHAMIYHOTO HEHTPOHHOTO ITydKa HajJ CTAalliOHAPHUM ITyYKOM HEHTPOHIB Tiei K
IHTEHCUBHOCTI TpUM MNPOHUKHEHHI B OHKOJIOTiYHY 007acTh, 3aBaHTaXXeHy OopoM Ta/abo ramominiem (B/Gd).
[IpoBenenuit aHamiz mi€i ckiIagHOI TPOOJIEMH TIPYHTYEThCS Ha OTHOTPYIOBiM Teopii HeWTpoHHOI mudy3ii 3
MePiOANYHUM 30BHIIIHIM ITy9KOM HEHTPOHIB B OTHOBUMIpHIN T€OMETPii.

Kniouosi crosa: nelitponHa nudysis, JHHAMIYHE JHKEPEIo HEUTPOHIB, Tepatis paKy.

Haccap X. C. Xaiimap*

Llenmp uccnedosanuti npuKiaOHoON MamMeMamuxy U CrmamucmuKky
Yuuseepcumema ucxyccms, nayx u mexnonozuii 6 Jlueawne, bBetipym, Jlusan
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MPEUMYIIECTBO JUHAMMYECKOM (B/Gd) HEUTPOHHOM TEPATIMU PAKA
HAJI CTAIITMOHAPHOM TEPAITUEN

JleMOHCTpHpyeTCsl MPEeUMYIECTBO JUHAMUYECKOIO HEHTPOHHOTO ITydka HaJ CTallMOHAPHBIM IyYKOM HEHTPOHOB
TOHM K€ WHTEHCHBHOCTHU TPH MPOHUKHOBCHHH B OHKOJIOTHMYECKYIO O0JAcThb, 3arpyKEHHYI OOpOM H/WiU TaJ0JHHHEM
(B/Gd). INpoBeneHHBI aHAmM3 3TOM CIOXHOIH MPOOIEMBI OCHOBBIBASTCS HAa OJHOTPYNIIOBOH TEOPHU HEUTPOHHOU
1 dys3un ¢ nepuoANIECKAM BHEIITHUM ITyYKOM HEHTPOHOB B OTHOMEPHOI reOMETpHUH.

Kniouegvie cnosa: HeTpoHHas ntuddy3usi, AMHAMAYECKUH HCTOYHUK HEUTPOHOB, TEPAITHS PaKa.
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