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THE INTERACTION ENERGY OF TWO UNIFORMLY CHARGED SPHEROIDS. 
EXAMPLE OF DEFORMED NUCLEI 

 

We consider the question of calculations of the interaction energy of two uniformly charged spheroids. Three cases 
are realized in the software: the interaction of a uniformly charged spheroid with a point charge; interaction of two  
coaxial spheroids; and the general case of mutual position of spheroids. The presented programs are initially oriented 
for nuclear calculations. However, by a change of numerical coefficients, they can be used in the calculations of the 
interaction energy in any cases of spheroidal objects with the uniformly distributed charge or mass. 
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1. Introduction 
 

The potentials of uniform spheroidal and ellip-

soidal charge distributions coincide functionally 

with the Newton potentials for homogeneous masses 

[1 - 3]. In [1], the potential of a spheroid with explic-

it dependence on the eccentricity is represented in 

the form of four separate expressions for interior and 

exterior domains in compressed and elongated sphe-

roids. The analogous formulas in a somewhat other 

form were given in [2] based on the transition to the 

spheroidal limit in the general formulas for the po-

tential of a triaxial ellipsoid [3].  

The dependence of the potential on the eccen-

tricity is equivalent to its dependence on the ratio of 

semiaxes /b a = , which is the parameter charac-

terizing the compression or elongation of a spheroid. 

The inclusion of the parameter   in numerical algo-

rithms reduces the number of representations of the 

potential of a spheroid to two ones, which are for-

mally similar and are related to the interior and exte-

rior domains.  

In addition to Newton problems [1,3], plasma 

physics [2], and Coulomb clusters [4], the spheroidal 

potential was applied to the estimation of a Coulomb 

contribution to the total interaction energy of de-

formed atomic nuclei (spheroids with uniformly dis-

tributed charge) and the comparison with the results 

obtained in multipole expansions of potential (see, 

e.g., [5] and references therein). The proposed pack-

age of programs is adapted namely for the solution 

of problems of nuclear physics.  

In the algorithms, we used the following units for 

physical quantities accepted in nuclear physics: the 

charge of a nucleus is taken in units of the standard 

charge e; the quantities with the dimension of length 

are written in units of 1510 1Fm;oR m−= =  potentials 

and the energy are presented, respectively, in units 

of / 4 1.44 MeV,o o oe R =    where o  is the 

electrical constant, and 1.44 MeV.o oE e=    The 

programs are written in Fortran-77. 
 

2. Basic relations 
 

The axisymmetric potential of a spheroid Φ at the 

internal points of the intrinsic reference system is 

parabolic 
 

 2 23 1
( , ) ( ) (1 ( )) ( 2 ( )) ,

2 2

Q
z S S S z

a ab

 
    =  − +   + −   

 
 (1) 

 

where Q  is the charge of a spheroid, a  are the 

lengths of semiaxes along the principal axes x  and 

y , b  is the semiaxis length along the rotation axis z, 
2 2 2x y = + , /b a = .  

The potential of a spheroid ( , )z   at external 

points corresponds to the right-hand side of (1), 

where the following changes should be carried out: 

2 2, ,a a a b b b → = + → = +  

 

 / .b a  → =  (2) 
 

Here,   is a function of the coordinates of external 

points , z  and the parameters ,a b  and is deter-

mined as a positive root of the equation  
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The functions ( )S   and ( )S  , like the case of the 

argument  , are given by the relations 
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The function ( ) 0S   and it decreases monotonical-

ly, as   increases, by starting from ( 0) / 2S  = =  . 

Respectively, ( ) 0S   , and it increases monoton-

ically, by starting from ( 0) 1.S  = = −  Potential (1) 

can be set with regard for only one of these func-

tions, for example, ( )S   [4].  

The interaction energy of two charge distribu-

tions, including two spheroidal ones, is given by the 

general equation 
 

 
int 1 2( ) ( ) ,E r r dr=    (7) 

 

which includes the potential 1  depending on the 

electric field of one of the spheroids (first) and on 

the charge density 2  of the second spheroid. The 

integration is performed over the volume of the sec-

ond spheroid.  

We admit the overlapping of spheroids. Below, 

we will give several exact formulas for the interac-

tion energy of two spheroids with uniform density. 

Let the spheroids with charges 1Q  and 2Q  have the 

common rotation axis and the common central point. 

Let one of the spheroids be placed completely inside 

of the second one. We introduce the notations 

( , )a b   and ( , )a b   for semiaxes and set 

/b a   = , /b a   = . In this case, the interaction 

energy of the spheroids takes the form 
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 (8) 

If the spheroids are concentric ( )  =  =  , then 
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At the complete overlapping of spheroids 

( , , / )a a a b b b b a   = = = =  = , 
 

 1 2
int

6
( )

5

Q Q
E S

a
=  . (10) 

 

For the concentric spheroids-balls with radii R  and 

R , Eqs. (8) - (10) take, respectively, the simple 

well-known form 
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Relations (8) - (11) can be used for the testing of 
numerical algorithms. 

We note that works [6] (see its Appendix) and [7] 
(two more economical options) present analytic 
formulas for the interaction energy of two uniformly 
charged balls centered at arbitrary spatial points. 

 

3. Description of the SPP program 
 

The SPP program allows one to calculate the in-
teraction energy of a uniformly electrically charged 
spheroid with semiaxes a and b and a point charge. 
The point charge can be placed outside or inside of 
the spheroid. The spheroid center is at the coordinate 
origin. The location of the point charge relative to 
the spheroid center is determined by spherical coor-
dinates (r, θ, φ) (Fig. 1). 

 

 

Fig. 1. The mutual arrangement of a point charge and a 

uniformly charged spheroid realized in the SPP program. 
 

From the viewpoint of the used formulas, the in-
tegration over the volume of the second charged 
body is made with the δ-function. Respectively, the 
interaction energy is represented by the potential 
created by the spheroid and multiplied by the charge 
of the point. 

x 

z 

y 

(r, θ, φ) 



THE INTERACTION ENERGY OF TWO UNIFORMLY CHARGED SPHEROIDS 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2020  Т. 21  № 1                                                                                        15 

Input parameters:  
Z1 – charge of a spheroid in units of the elemen-

tary charge; 
Z2 – charge of the point in units of the elemen-

tary charge; 
a – lengths of semiaxes of the spheroid along the 

axes x and y in Fm; 
b – semiaxis length of the spheroid along the axis 

z in Fm; 
rmin – minimum distance from the spheroid cen-

ter to the point in Fm; 
rmax – m ximum distance from the spheroid cen-

ter to the point in Fm; 
hr – increment in r in Fm; 
tetmind – minimum value of the angle θ in  

degrees; 
tetmaxd – maximum value of the angle θ in  

degrees; 
htetd – increment in the angle θ in degrees; 
fimind – minimum value of the angle φ in  

degrees; 
fimaxd – maximum value of the angle φ in  

degrees; 
hfid – increment in the angle φ in degrees. 
Eventually, the interaction energy of the point 

charge with the uniformly charged spheroid is  
assigned to the variable Eell and is calculated, by 
calling the subprogram Espherop(r,tetr,fir). The 
formal parameters of this subprogram are the varia-
bles r (distance from the spheroid center to the 
point), tetr (angle θ in radians), and fir (angle φ in 
radians). The results of the calculations are recorded 
in the file 'Eell.dat'. In this case, the quantities 
ee = 1.44, Z1, Z2, and a, b, respectively, are trans-
ferred from the basic program to the subprogram 
Espherop(r,tetr,fir) through the common blocks 
/ceez/ and /cab/.  

To compare the results of calculations of the pro-
posed program with those describing the interaction 
of a point charge with a uniformly charged ball, we 
introduce a subprogram Espherep(rsph,r), where 
rsph is the radius of a uniformly charged ball equiva-
lent to the spheroid by volume, and r is the distance 
from the ball center to the point charge. The result is 
assigned to the variable Esph and is recorded in the 
file 'Esph.dat'. The calculation of the interaction  

energy of a point charge with a uniformly charged 
ball is performed by the known equation 

 

2

2
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/ for
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4. Description of the program CoaxSpSp 
 

The program CoaxSpSp calculates the interaction 
energy of two uniformly charged coaxial spheroids, 
which can be spatially disjoint or can intersect each 
other. The mutual arrangement of the spheroids is 
schematically illustrated in Fig. 2. This case is cha-
racterized by that the general formulas presented in 
the Introduction that possess the cylindrical sym-
metry. By this, the problem is reduced to the double 
integration over the volume of the second spheroid 
concerning the variables ρ2 and z2. This procedure is 
practically realized with the subsequent double  
application of the program DGAUSS from the 
CERN library for the calculation of one-dimensional 
integrals. 

Input parameters: 
Z1 – charge of the first spheroid in units of the 

elementary charge; 
Z2 – charge of the second spheroid in units of the 

elementary charge; 
a1 – length of semiaxes of the first spheroid 

along the axes x and y in Fm; 
b1 – semiaxis length of the first spheroid along 

the axis z in Fm; 
a2 – length of semiaxes of the second spheroid 

along the axes x and y in Fm; 
b2 – semiaxis length of the second spheroid 

along the axis z in Fm; 
Rmin – minimum displacement between the cen-

ters of the spheroids along the axis z; 
Rmax – maximum displacement between the 

centers of the spheroids along the axis z; 
HR – increment used in the calculation of the 

displacement along the axis z; 
eps – accuracy of calculations of the external  

integral; 
eps1 – accuracy of calculations of the internal  

integral. 
 

 
 

Fig. 2. The mutual arrangement of two uniformly charged coaxial spheroids realized in the CoaxSpSp program. 

x1 x2 

y1 y2 

z 
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Finally, the interaction energy of the spheroids is 

calculated by calling the subprogram  

Eellips(a1,b1,a2,b2,R), where the formal parameters 

are the semiaxes of the first spheroid a1 and b1, 

semiaxes of the second spheroid a2 and b2, and dis-

placement between the centers of the spheroids R. 

The result is assigned to the variable Eell and is re-

corded in the file 'Esph.dat'. In this case, the number 

π, quantity ee = 1.44, charges Z1 and Z2, and accu-

racy of calculations of the external integral eps are 

transferred from the basic program to the subpro-

gram Eellips(a1,b1,a2,b2,R) by means of the com-

mon blocks /cpi/pi/ceez/ee,Z1,Z2/ceps/eps. The  

accuracy of calculations of the internal integral eps1 

is transferred from the basic program to the subpro-

gram fz(z) with the use of the common block 

/ceps1/eps1.  

For the sake of comparison of the results of cal-

culations by the proposed program with the results 

of calculations of the interaction of two uniformly 

charged balls, our program includes a subprogram 

Esphere(resph1,resph2,R), where resph1 – radius of 

the first ball; resph2 – radius of the second ball; (the 

program operates with balls equivalent to spheroids 

by volume); R – the distance between the centers of 

the balls. 

Here, we use the above-mentioned block 

/ceez/ee,Z1,Z2. 

The interaction energy of two uniformly charged 

balls is calculated by the equation [7] 
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where Q1 and Q2 are the charges of the balls, R1 and 

R2 are the radii of the balls, and R is the distance be-

tween the centers of the balls. In the presented rec-

ord, the formula is valid for R1 ≥ R2, but this specific 

feature is easily compensated in calculations since 

the interaction energy of the balls is independent of 

their numbering. 
 

5. Description of the program ComSPSP 
 

The program ComSPSP is intended for the calcu-

lation of the interaction energy of two uniformly 

charged spheroids in the case of their arbitrary mu-

tual arrangement. The spheroids can intersect each 

other or be disjoint. The scheme presenting the clear 

idea of the parameters characterizing a mutual ar-

rangement of the spheroids is given in Fig. 3. A sim-

ilar parametrization of the mutual arrangement of 

spheroids is frequently used in nuclear physics.  

According to the equations in the Introduction, the 

program can integrate the potential created by the 

first spheroid in the volume of the second spheroid. 

The program makes integration over the volume of 

an equivalent ball with the help of the triple subse-

quent usage of the program DGAUSS taken from 

the CERN library, which calculates integrals in  

finite limits. 
 

 
 

Fig. 3. The mutual arrangement of two uniformly charged spheroids realized in the program ComSPSP. 
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The input parameters of the program are as fol-

lows: 

Z1 – charge of the first spheroid in units of the 

elementary charge; 

Z2 – charge of the second spheroid in units of the 

elementary charge; 

a1 – lengths of semiaxes of the first spheroid 

along the axes x1 and y1 in units of Fm; 

b1 – semiaxis length of the first spheroid along 

the axis z1 in units of Fm; 

a2 – lengths of semiaxes of the second spheroid 

along the axes x2 and y2 in units of Fm; 

b2 – semiaxis length of the second spheroid 

along the axis z2 in units of Fm; 

sZin – an initial shift of the center of the second 

spheroid relative to the center of the first spheroid 

along the axis z; 

sZfin – a final shift of the center of the second 

spheroid relative to the center of the first spheroid 

along the axis z; 

HsZ – shift increment along the axis z realized in 

a cycle; 

Sx – a shift of the center of the second spheroid 

relative to the center of the first spheroid along the 

axis x; 

Sy – a shift of the center of the second spheroid 

relative to the center of the first spheroid along the 

axis y; 

tet1d – rotation angle of the axis z1 of the intrin-

sic coordinate system of the first spheroid relative to 

the axis z (in degrees); 

tet2din – starting angle between the axis z2 of the 

intrinsic coordinate system of the second spheroid 

and the axis z (in degrees) in a cycle; 

tet2dfin – the final angle between the axis z2 of 

the intrinsic coordinate system of the second sphe-

roid and the axis z (in degrees) in a cycle; 

htet2d – an increment of the angle tet2d (in de-

grees) in a cycle; 

psidin – starting rotation angle of the second 

spheroid around the axis z (z´ at the consideration of 

displacement along the axis x or y) in degrees in a 

cycle; 

psidfin – final rotation angle of the second sphe-

roid around the axis z (z´ at the consideration of dis-

placement along the axis x or y) in degrees in a cy-

cle; 

hpsid – an increment of the angle psid (in de-

grees) in a cycle; 

eps2 – the accuracy of calculations of the internal 

integral; 

eps1 – the accuracy of calculations of the mean 

integral; 

eps – the accuracy of calculations of the external 

integral. 

The final result of calculations is assigned to the 

variable Eint at the call of a subprogram  

Ener(a1,b1,a2,b2,sX,sY,sZ,tet1,tet2,psi). 

With the use of formal parameters, the subpro-

gram Ener is supplied by the lengths of semiaxes of 

the spheroids a1,b1,a2,b2, shifts sX,sY,sZ of the 

second spheroid relative to the first one along the 

axes x, y, z, and angles determining the mutual ori-

entation of the spheroids tet1,tet2,psi, which are set 

in radians. In this case, we transfer the number π, 

quantity ee = 1.44, charges Z1 and Z2, and accuracy 

of calculations of the external integral eps from the 

basic program to the subprogram Ener using the 

common blocks /cpi/pi/ceez/ee,Z1,Z2/ceps/eps. The 

accuracy of calculations of the internal integrals 

eps1 and eps2 is transferred from the basic program 

to the subprograms fz(z) and fy(y) with the use of 

the common blocks /ceps1/eps1 and /ceps2/eps2. 

The results of calculations of the interaction en-

ergy of spheroids depending on the input parameters 

are recorded in the file 'Ener.dat'. 
 

6. Calculation examples 
 

Here are some examples of numerical calculation 

of interaction energy for uniformly charged sphe-

roids. In the figures, beta characterizes the degree of 

spheroid deformation and is equal to 

2 ( ) / ( )b a b a − + , where b is semi-axis of the sphe-

roid z, a and b – for x and y axes. 

The spheroid is centered at the origin (Fig. 4). 

The point is moving closer to the spheroid along the 

Z axis (teta = 0), at angle of 45 degrees relative to 

the Z axis (teta = 45) and at angle of 90 degrees to 

the Z axis, i.e. in the XY plane. For comparison, the 

interaction energy of a point charge with an isomet-

ric ball with the same charge is given depending on 

the distance from the center of the ball to the point. 
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Fig. 4. The interaction of point unit charge with spheroid. 
 

Rotation occurs around the X axis (Fig. 5). Three 

cases are considered. The first case corresponds to 
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the situation in which the rotating point does not go 

beyond the spheroid border, being constantly inside 

(R = 2 Fm). The second case is when moving along 

a circular path (R = 4 Fm) the charged point is locat-

ed both inside of the spheroid and outside. And the 

third (R = 6 Fm) - the point is constantly outside of 

the spheroid. 
 

  E, MeV 

-50 0 50 100 150 200 250 300 350 400

8
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14
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20

22

Z
1
=39, Z

2
=1. a=3 Fm, b=5 Fm.

beta=0.5,

E
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M

e
V

teta, deg.

 R=2 Fm. 

 R=4 Fm.

 R=6 Fm.

 
                                                                   teta, deg 
 

Fig. 5. Rotation in XOZ plane of unit point charge around 

the spheroid center along spherical trajectories with dif-

ferent radiuses. 
 

In the first case, two identical elongated charged 

spheroids with semiaxes shown in Fig. 6 are consi-

dered. For comparison, the energy of the interaction 

of two isometric balls is presented (two upper 

curves). A similar situation is presented for flattened 

spheroids (a pair of lower curves). 
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Fig 6. The interaction energy of two coaxial spheroids 

(elongated, flattened) and isometric spheres (see Fig. 2). 
 

In Fig. 7 the axes of the first spheroid's coordi-

nate system are aligned with the XYZ axes, and the 

Z2 own axis of the second spheroid is directed at 

angles of 0, 45 and 90 degrees concerning the Z  

axis. There is no rotation around the Z axis. 
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Fig 7. The interaction energy of two elongated spheroids 

for some mutual orientations. 
 

The centers of spheroids are located on the Z axis 

(Fig. 8). The own axes of the spheroids Z1 and Z2 

located at angles 90 degrees with the Z axis. The 

rotation angle Ψ of the second spheroid around Z 

axis takes values of 0, 45 and 90 degrees. 
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Fig. 8. The interaction energy of two elongated spheroids 

for some mutual orientations (see Fig. 3). 
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Fig. 9. Rotation around the Y axis of the second spheroid 

located at different distances from the first one (see Fig. 3). 
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In Fig. 9 the spheroid centers are located at Z. 

θ1 = 0 degrees and is a constant, the θ2 angle changes 

in a continuous manner. Herewith, the spheroid cen-

ters are located at different distances from each other. 
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Fig. 10. The interaction energy of two elongated sphe-

roids in central and non-central collisions. Θ1 = Θ2 = 0 

(see Fig. 3).  

In Fig. 10 the second spheroid moves relative to 

the first one in the direction opposite to the Z axis 

with an offset along the X axis, which is expressed 

in units of a. 
 

7. Conclusion 
 

By using the numerical methods, we have solved 

the problem of calculation of the interaction energy 

of two uniformly charged spheroids. The solution is 

presented in the form of three programs: SPP, 

CoaxSpSp, and ComSPSP. The first one involves 

the interaction of a uniformly charged spheroid with 

a point charge. The second and third programs con-

sider, respectively, two coaxial spheroids and the 

general mutual arrangement of two uniformly 

charged spheroids. 
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ЕНЕРГІЯ ВЗАЄМОДІЇ ДВОХ РІВНОМІРНО ЗАРЯДЖЕНИХ СФЕРОЇДІВ. 

ПРИКЛАД  ДЕФОРМОВАНОГО ЯДРА 

 

Розглядається питання обчислення енергії взаємодії двох рівномірно заряджених сфероїдів. Програмно реа-

лізовано три випадки: взаємодія рівномірно зарядженого сфероїда з точковим зарядом; взаємодія двох співвіс-

них сфероїдів; загальний випадок взаємного розташування сфероїдів. Наведені програми з самого початку оріє-

нтовані на проведення ядерних розрахунків. Однак заміною числових коефіцієнтів їх можна зробити корисними 

і для обчислення енергії взаємодії в будь-яких випадках, в яких фігурують сфероїдальні об'єкти з рівномірно 

розподіленим зарядом або масою. 

Ключові слова: кулонівська взаємодія, рівномірно заряджені сфероїди, потенціал рівномірно заряджених 

сфероїдів, взаємодія рівномірно зарядженого сфероїда та точкового заряду, взаємодія співвісних сфероїдів, вза-

ємодія довільно розміщених сфероїдів. 
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ЭНЕРГИЯ ВЗАИМОДЕЙСТВИЯ ДВУХ РАВНОМЕРНО ЗАРЯЖЕННЫХ СФЕРОИДОВ. 

ПРИМЕР ДЕФОРМИРОВАННОГО ЯДРА 
 

Рассматривается вопрос вычисления энергии взаимодействия двух равномерно заряженных сфероидов. 

Программно реализованы три случая: взаимодействие равномерно заряженного сфероида с точечным зарядом; 

взаимодействие двух соосных сфероидов; общий случай взаимного расположения сфероидов. Приведенные 

программы изначально ориентированы на проведение ядерных расчетов. Однако заменой численных коэффи-

циентов их можно сделать полезными и для вычисления энергии взаимодействия в любых случаях, в которых 

фигурируют сфероидальные объекты с равномерно распределенным зарядом или массой. 

Ключевые слова: кулоновское взаимодействие, равномерно заряженные сфероиды, потенциал равномерно 

заряженных сфероидов, взаимодействие равномерно заряженного сфероида и точечного заряда, взаимодей-

ствие соосных сфероидов, взаимодействие произвольно расположенных сфероидов. 
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