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THE INTERACTION ENERGY OF TWO UNIFORMLY CHARGED SPHEROIDS.
EXAMPLE OF DEFORMED NUCLEI

We consider the question of calculations of the interaction energy of two uniformly charged spheroids. Three cases
are realized in the software: the interaction of a uniformly charged spheroid with a point charge; interaction of two
coaxial spheroids; and the general case of mutual position of spheroids. The presented programs are initially oriented
for nuclear calculations. However, by a change of numerical coefficients, they can be used in the calculations of the

interaction energy in any cases of spheroidal objects with the uniformly distributed charge or mass.
Keywords: Coulomb interaction, uniformly charged spheroids, potential of uniformly charged spheroids, interaction of
uniformly charged spheroid and point charge, interaction of coaxial spheroids, interaction of arbitrarily placed spheroids.

1. Introduction

The potentials of uniform spheroidal and ellip-
soidal charge distributions coincide functionally
with the Newton potentials for homogeneous masses
[1 - 3]. In [1], the potential of a spheroid with explic-
it dependence on the eccentricity is represented in
the form of four separate expressions for interior and
exterior domains in compressed and elongated sphe-
roids. The analogous formulas in a somewhat other
form were given in [2] based on the transition to the
spheroidal limit in the general formulas for the po-
tential of a triaxial ellipsoid [3].

The dependence of the potential on the eccen-
tricity is equivalent to its dependence on the ratio of
semiaxes B=Db/a, which is the parameter charac-

terizing the compression or elongation of a spheroid.
The inclusion of the parameter 3 in numerical algo-

rithms reduces the number of representations of the
potential of a spheroid to two ones, which are for-
mally similar and are related to the interior and exte-
rior domains.

In addition to Newton problems [1,3], plasma

potential was applied to the estimation of a Coulomb
contribution to the total interaction energy of de-
formed atomic nuclei (spheroids with uniformly dis-
tributed charge) and the comparison with the results
obtained in multipole expansions of potential (see,
e.g., [5] and references therein). The proposed pack-
age of programs is adapted namely for the solution
of problems of nuclear physics.

In the algorithms, we used the following units for
physical quantities accepted in nuclear physics: the
charge of a nucleus is taken in units of the standard
charge e; the quantities with the dimension of length

are written in units of R, =10"°m=1Fm; potentials

and the energy are presented, respectively, in units
of ®,=e/4ne,R, =1.44 MeV, where ¢, is the

o o —

electrical constant, and E, =ed, 6 =1.44 MeV. The
programs are written in Fortran-77.

2. Basic relations

The axisymmetric potential of a spheroid @ at the
internal points of the intrinsic reference system is

physics [2], and Coulomb clusters [4], the spheroidal | parabolic

®(p,2) =g%{5(ﬁ)—7ib[(l+8'(8))p2 +(—28'<B>)z2]}, ®

where Q is the charge of a spheroid, a are the
lengths of semiaxes along the principal axes x and
y, b is the semiaxis length along the rotation axis z,
pP=x*+y?, B=b/a.

The potential of a spheroid ®(p, z) at external

points corresponds to the right-hand side of (1),
where the following changes should be carried out:

a—a, =+a’+A, b—ob =+b*+A,

B%Bx:bx/ax- (2)

Here, A is a function of the coordinates of external
points p,z and the parameters a,b and is deter-

mined as a positive root of the equation
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(C+y) (@2 +0)+22 /(0% +0) =1,  (3)

xzé(A+JA2+4B) A=p’+72—a-b?,
2 22
B= abz(a +F_1J>O @)

The functions S(B) and S'(B), like the case of the
argument 3, , are given by the relations

S 1 arccos(p) S =1
B<1= —\/1_—[3 B=1=
3(13>1)=|”(B+2— VB 1), )
J-1
S(B#1) = B“mz9 SG-D=-3.  ©

The function S(B) >0and it decreases monotonical-
ly, as B increases, by starting from S(B=0)==/2.
Respectively, S'(B) <0, and it increases monoton-
ically, by starting from S’(3 =0)=-1. Potential (1)
can be set with regard for only one of these func-
tions, for example, S(B) [4].

The interaction energy of two charge distribu-
tions, including two spheroidal ones, is given by the
general equation

By = [ @,(F)p, (1), )

which includes the potential @, depending on the
electric field of one of the spheroids (first) and on
the charge density p, of the second spheroid. The
integration is performed over the volume of the sec-
ond spheroid.

We admit the overlapping of spheroids. Below,
we will give several exact formulas for the interac-
tion energy of two spheroids with uniform density.
Let the spheroids with charges Q, and Q, have the
common rotation axis and the common central point.
Let one of the spheroids be placed completely inside
of the second one. We introduce the notations
(a.,b)) and (a,b) for semiaxes and set

B.=b_/a_, B. =b /a_ . Inthis case, the interaction
energy of the spheroids takes the form

3QQ, 1(a Y1 o
Ein =§a_>{s(ﬁ>)_§[a_>j E[“(l‘&)s (ll)]}

(8)

If the spheroids are concentric (3. =p. =p), then

_3QQ ol 1fa)
B =5 s S(B){l s[ia>] }. ©

At the complete overlapping of spheroids
(a.=a =a,b.=b =b,p=b/a),
Ey =0 S5 (p) (10)
5 a

For the concentric spheroids-balls with radii R_ and
R., Egs. (8) - (10) take, respectively, the simple
well-known form

Eint 3 Qle[ 1[&j ]1 Eint ZQ% (11)
2 R 5(R 5 R

>

Relations (8) - (11) can be used for the testing of
numerical algorithms.

We note that works [6] (see its Appendix) and [7]
(two more economical options) present analytic
formulas for the interaction energy of two uniformly
charged balls centered at arbitrary spatial points.

3. Description of the SPP program

The SPP program allows one to calculate the in-
teraction energy of a uniformly electrically charged
spheroid with semiaxes a and b and a point charge.
The point charge can be placed outside or inside of
the spheroid. The spheroid center is at the coordinate
origin. The location of the point charge relative to
the spheroid center is determined by spherical coor-
dinates (r, 0, ¢) (Fig. 1).

X /‘. (ra es (P)

v

Fig. 1. The mutual arrangement of a point charge and a
uniformly charged spheroid realized in the SPP program.

From the viewpoint of the used formulas, the in-
tegration over the volume of the second charged
body is made with the o-function. Respectively, the
interaction energy is represented by the potential
created by the spheroid and multiplied by the charge
of the point.
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Input parameters:

Z1 — charge of a spheroid in units of the elemen-
tary charge;

Z2 — charge of the point in units of the elemen-
tary charge;

a — lengths of semiaxes of the spheroid along the
axes xand y in Fm;

b — semiaxis length of the spheroid along the axis
zin Fm;

rmin — minimum distance from the spheroid cen-
ter to the point in Fm;

rmax — m ximum distance from the spheroid cen-
ter to the point in Fm;

hr —incrementinr in Fm;

tetmind — minimum value of the angle 6 in
degrees;

tetmaxd — maximum value of the angle 6 in
degrees;

htetd — increment in the angle 6 in degrees;

fimind — minimum value of the angle ¢ in
degrees;

fimaxd — maximum value of the angle ¢ in
degrees;

hfid — increment in the angle ¢ in degrees.

Eventually, the interaction energy of the point
charge with the uniformly charged spheroid is
assigned to the variable Eell and is calculated, by
calling the subprogram Espherop(rtetr,fir). The
formal parameters of this subprogram are the varia-
bles r (distance from the spheroid center to the
point), tetr (angle 6 in radians), and fir (angle ¢ in
radians). The results of the calculations are recorded
in the file 'Eell.dat. In this case, the quantities
ee=144, 71, Z2, and a, b, respectively, are trans-
ferred from the basic program to the subprogram
Espherop(r,tetr,fir) through the common blocks
[ceez/ and /cab/.

To compare the results of calculations of the pro-
posed program with those describing the interaction
of a point charge with a uniformly charged ball, we
introduce a subprogram Espherep(rsph,r), where
rsph is the radius of a uniformly charged ball equiva-
lent to the spheroid by volume, and r is the distance
from the ball center to the point charge. The result is
assigned to the variable Esph and is recorded in the
file 'Esph.dat’. The calculation of the interaction

X1

energy of a point charge with a uniformly charged
ball is performed by the known equation

2
g 3—r—2 forr <R,
@(r)=42R R .
Q/r forr>=R

4. Description of the program CoaxSpSp

The program CoaxSpSp calculates the interaction
energy of two uniformly charged coaxial spheroids,
which can be spatially disjoint or can intersect each
other. The mutual arrangement of the spheroids is
schematically illustrated in Fig. 2. This case is cha-
racterized by that the general formulas presented in
the Introduction that possess the cylindrical sym-
metry. By this, the problem is reduced to the double
integration over the volume of the second spheroid
concerning the variables p, and z,. This procedure is
practically realized with the subsequent double
application of the program DGAUSS from the
CERN library for the calculation of one-dimensional
integrals.

Input parameters:

Z1 — charge of the first spheroid in units of the
elementary charge;

Z2 — charge of the second spheroid in units of the
elementary charge;

al — length of semiaxes of the first spheroid
along the axes x and y in Fm;

bl — semiaxis length of the first spheroid along
the axis z in Fm;

a2 — length of semiaxes of the second spheroid
along the axes x and y in Fm;

b2 — semiaxis length of the second spheroid
along the axis z in Fm;

Rmin — minimum displacement between the cen-
ters of the spheroids along the axis z;

Rmax — maximum displacement between the
centers of the spheroids along the axis z;

HR — increment used in the calculation of the
displacement along the axis z;

eps — accuracy of calculations of the external
integral;

epsl — accuracy of calculations of the internal
integral.

X2

Y1

Y2

Fig. 2. The mutual arrangement of two uniformly charged coaxial spheroids realized in the CoaxSpSp program.
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Finally, the interaction energy of the spheroids is
calculated by calling the subprogram
Eellips(al,bl,a2,b2,R), where the formal parameters
are the semiaxes of the first spheroid al and bl,
semiaxes of the second spheroid a2 and b2, and dis-
placement between the centers of the spheroids R.
The result is assigned to the variable Eell and is re-
corded in the file 'Esph.dat'. In this case, the number
7, quantity ee = 1.44, charges Z1 and Z2, and accu-
racy of calculations of the external integral eps are
transferred from the basic program to the subpro-
gram Eellips(al,bl,a2,b2,R) by means of the com-
mon blocks /cpi/pi/ceez/ee,Z1,Z2/ceps/eps. The
accuracy of calculations of the internal integral epsl
is transferred from the basic program to the subpro-

~R,,

Ecou (R) =

y4
R { 160RR}

where Q1 and Q; are the charges of the balls, R and
R2 are the radii of the balls, and R is the distance be-
tween the centers of the balls. In the presented rec-
ord, the formula is valid for Ry > Ry, but this specific
feature is easily compensated in calculations since
the interaction energy of the balls is independent of
their numbering.

5. Description of the program ComSPSP

The program ComSPSP is intended for the calcu-
lation of the interaction energy of two uniformly
charged spheroids in the case of their arbitrary mu-
tual arrangement. The spheroids can intersect each

3Q0Q,
2 R}

gram fz(z) with the use of the common block
/cepsl/epsl.

For the sake of comparison of the results of cal-
culations by the proposed program with the results
of calculations of the interaction of two uniformly
charged balls, our program includes a subprogram
Esphere(resphl,resph2,R), where resphl — radius of
the first ball; resph2 — radius of the second ball; (the
program operates with balls equivalent to spheroids
by volume); R — the distance between the centers of
the balls.

Here, we use the above-mentioned block
[ceez/ee,Z1,Z2.

The interaction energy of two uniformly charged
balls is calculated by the equation [7]

1 1
(Rf—ng—ngzj.

other or be disjoint. The scheme presenting the clear
idea of the parameters characterizing a mutual ar-
rangement of the spheroids is given in Fig. 3. A sim-
ilar parametrization of the mutual arrangement of
spheroids is frequently used in nuclear physics.
According to the equations in the Introduction, the
program can integrate the potential created by the
first spheroid in the volume of the second spheroid.
The program makes integration over the volume of
an equivalent ball with the help of the triple subse-
guent usage of the program DGAUSS taken from
the CERN library, which calculates integrals in
finite limits.

Zo "

(\\%l
U%

Fig. 3. The mutual arrangement of two uniformly charged spheroids realized in the program ComSPSP.
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The input parameters of the program are as fol-
lows:

Z1 — charge of the first spheroid in units of the
elementary charge;

Z2 — charge of the second spheroid in units of the
elementary charge;

al — lengths of semiaxes of the first spheroid
along the axes x; and y1 in units of Fm;

bl — semiaxis length of the first spheroid along
the axis z1 in units of Fm;

a2 — lengths of semiaxes of the second spheroid
along the axes x» and y- in units of Fm;

b2 — semiaxis length of the second spheroid
along the axis z; in units of Fm;

sZin — an initial shift of the center of the second
spheroid relative to the center of the first spheroid
along the axis z;

sZfin — a final shift of the center of the second
spheroid relative to the center of the first spheroid
along the axis z;

HsZ — shift increment along the axis z realized in
a cycle;

Sx — a shift of the center of the second spheroid
relative to the center of the first spheroid along the
axis X;

Sy — a shift of the center of the second spheroid
relative to the center of the first spheroid along the
axisy;

tetld — rotation angle of the axis z; of the intrin-
sic coordinate system of the first spheroid relative to
the axis z (in degrees);

tet2din — starting angle between the axis z, of the
intrinsic coordinate system of the second spheroid
and the axis z (in degrees) in a cycle;

tet2dfin — the final angle between the axis z, of
the intrinsic coordinate system of the second sphe-
roid and the axis z (in degrees) in a cycle;

htet2d — an increment of the angle tet2d (in de-
grees) in a cycle;

psidin — starting rotation angle of the second
spheroid around the axis z (z" at the consideration of
displacement along the axis x or y) in degrees in a
cycle;

psidfin — final rotation angle of the second sphe-
roid around the axis z (z” at the consideration of dis-
placement along the axis x or y) in degrees in a cy-
cle;

hpsid — an increment of the angle psid (in de-
grees) in a cycle;

eps2 — the accuracy of calculations of the internal
integral;

epsl — the accuracy of calculations of the mean
integral;

eps — the accuracy of calculations of the external
integral.

The final result of calculations is assigned to the

variable Eint at the call of a subprogram
Ener(al,bl,a2,b2,sX,sY,sZ,tetl tet2,psi).

With the use of formal parameters, the subpro-
gram Ener is supplied by the lengths of semiaxes of
the spheroids al,bl,a2,b2, shifts sX,sY,sZ of the
second spheroid relative to the first one along the
axes X, Y, z, and angles determining the mutual ori-
entation of the spheroids tetl,tet2,psi, which are set
in radians. In this case, we transfer the number =,
quantity ee = 1.44, charges Z1 and Z2, and accuracy
of calculations of the external integral eps from the
basic program to the subprogram Ener using the
common blocks /cpi/pi/ceez/ee,Z1,Z2/ceps/eps. The
accuracy of calculations of the internal integrals
epsl and eps2 is transferred from the basic program
to the subprograms fz(z) and fy(y) with the use of
the common blocks /cepsl/epsl and /ceps2/eps2.

The results of calculations of the interaction en-
ergy of spheroids depending on the input parameters
are recorded in the file 'Ener.dat'.

6. Calculation examples

Here are some examples of numerical calculation
of interaction energy for uniformly charged sphe-
roids. In the figures, beta characterizes the degree of
spheroid  deformation and is equal to
2-(b—a)/(b+a), where b is semi-axis of the sphe-
roid z, a and b — for x and y axes.

The spheroid is centered at the origin (Fig. 4).
The point is moving closer to the spheroid along the
Z axis (teta = 0), at angle of 45 degrees relative to
the Z axis (teta = 45) and at angle of 90 degrees to
the Z axis, i.e. in the XY plane. For comparison, the
interaction energy of a point charge with an isomet-
ric ball with the same charge is given depending on
the distance from the center of the ball to the point.

E, MeV
26

24

224

teta=0".
---- teta=45".
- teta=90°.
———s Isometric sphere.

20
18 4
16 -
1] 2=39,2=1. %

124 a=3 Fm, b=5 Fm.
beta=0.5.
10
8 7] -~
] ;
T T T T T
0 2 4 6 8

R, Fm

Fig. 4. The interaction of point unit charge with spheroid.

Rotation occurs around the X axis (Fig. 5). Three
cases are considered. The first case corresponds to
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the situation in which the rotating point does not go
beyond the spheroid border, being constantly inside
(R = 2 Fm). The second case is when moving along
a circular path (R = 4 Fm) the charged point is locat-
ed both inside of the spheroid and outside. And the
third (R = 6 Fm) - the point is constantly outside of
the spheroid.

E, MeV
22 -
20 A \_/\/-_ R=2 Fm.
Z1=39, 22=1' a=3 Fm, b=5 Fm. - --- R=4Fm.
18 4 beta=0.5, - R=6 Fm.
N ’ - \ .7
16 \ , \ ,
| , 3 ,
14 - N /’I AR !

12

10

8 T T T T T T T T 1
-50 0 50 100 150 200 250 300 350 400

teta, deg

Fig. 5. Rotation in XOZ plane of unit point charge around
the spheroid center along spherical trajectories with dif-
ferent radiuses.

In the first case, two identical elongated charged
spheroids with semiaxes shown in Fig. 6 are consi-
dered. For comparison, the energy of the interaction
of two isometric balls is presented (two upper
curves). A similar situation is presented for flattened
spheroids (a pair of lower curves).

E, MeV

Z1 =Z2 =40,
800 - a,=3.0, b =5.0. beta=0.5.
a1=5.0, b1=3.0. beta=-0.5.

700

Elongated spheroids.
- - - - Isometric to them balls.
------ Flattened spheroids.
————— Isometric to them balls.

TUEee

600 RN

500

400

300

200 +

R, Fm

Fig 6. The interaction energy of two coaxial spheroids
(elongated, flattened) and isometric spheres (see Fig. 2).

In Fig. 7 the axes of the first spheroid's coordi-
nate system are aligned with the XYZ axes, and the
Z2 own axis of the second spheroid is directed at
angles of 0, 45 and 90 degrees concerning the Z
axis. There is no rotation around the Z axis.

teta1=0’, psi=0°, teta2=0°
3 - - - “teta1=0°, psi=0", teta2=45"
600 AN | teta1=0°, psi=0°, teta2=90°

500 |
Z,=2,=40.
a,=3 Fm, b1:5 Fm.
s0{ @,=3 Fm, b2:5 Fm.
beta=0.5.

400

200 -

R, Fm

Fig 7. The interaction energy of two elongated spheroids
for some mutual orientations.

The centers of spheroids are located on the Z axis
(Fig. 8). The own axes of the spheroids Z1 and Z2
located at angles 90 degrees with the Z axis. The
rotation angle ¥ of the second spheroid around Z
axis takes values of 0, 45 and 90 degrees.

E, MeV

800

teta1=90°, psi=0’, teta2=90°
- - - -teta1=90°, psi=45°, teta2=90°
------ teta1=90°, psi=90°, teta2=90"

700

600

500 Z,=2,=40.
a1=3 Fm, b1=5 Fm.
32:3 Fm, b2=5 Fm.
beta=0.5.

400

300

200

R, Fm

Fig. 8. The interaction energy of two elongated spheroids
for some mutual orientations (see Fig. 3).

E, MeV
Z.=Z =40.a =a =3 Fm, b =b_=5 Fm.
1 2 1 2 1 2

650 \/\/
600 -
5507 ——R=3Fm
50047~ _ LT .-~ |----R=5Fm
450 S-- R EEEREE R=7 Fm
wl R=9 Fm

: ---R=11Fm
350 e T
300
250_ ...................... -
soo T T e
150 T T T T T T T T T 1

0 50 100 150 200 250 300 350 400 450

teta2, deg.

Fig. 9. Rotation around the Y axis of the second spheroid
located at different distances from the first one (see Fig. 3).
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In Fig. 9 the spheroid centers are located at Z.
01 = 0 degrees and is a constant, the 62 angle changes
in a continuous manner. Herewith, the spheroid cen-
ters are located at different distances from each other.

E, MeV

Z =Z =40. —3S.=0.0
8004 ' 2 X

a,=a =a=3 Fm. ---- 8§=0.5a
700 b =b =b=5 Fm. 8§ =1.0a

beta=0.5. s SX=2.0a
0007 - -8 =4.0a
500 -
400 4
300 :
200 - e T
100 T T T T T

10 5 0 5 10
R, Fm

Fig. 10. The interaction energy of two elongated sphe-
roids in central and non-central collisions. ®; = ®, = 0
(see Fig. 3).

In Fig. 10 the second spheroid moves relative to
the first one in the direction opposite to the Z axis
with an offset along the X axis, which is expressed
in units of a.

7. Conclusion

By using the numerical methods, we have solved
the problem of calculation of the interaction energy
of two uniformly charged spheroids. The solution is
presented in the form of three programs: SPP,
CoaxSpSp, and ComSPSP. The first one involves
the interaction of a uniformly charged spheroid with
a point charge. The second and third programs con-
sider, respectively, two coaxial spheroids and the
general mutual arrangement of two uniformly
charged spheroids.

The present work was partially supported by the
National Academy of Sciences of Ukraine (project
No. 0117U000239).
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EHEPTISI BBACMO/Ii IBOX PIBHOMIPHO 3APSIIKEHUX C®EPOI IIB.
MPUKJIAJL JE®@OPMOBAHOTIO SI/IPA

PosrnsmaeTbes muTaHHS OOYMCIICHHSI CHEPTii B3aEMOIIi TBOX PIBHOMIPHO 3apsmkeHux cdepoiais. [Iporpamuo pea-
JIi30BaHO TPH BUIMAJKU: B3aEMOJIis PIBHOMIPHO 3apsAKEHOTO chepoifa 3 TOUKOBUM 3apsiIOM; B3a€EMOJIIS TBOX CITIBBIC-
HUX cepoiniB; 3aralbHUI BUIIAJOK B3aEMHOTO po3TalryBaHHs cdepoiniB. HaBeneni nporpamu 3 caMoro no4arky opie-
HTOBaHI Ha MPOBEACHHS SIEPHAX PO3paxyHKiB. OQHAK 3aMiHOIO YHCIOBHX KOS(IIIEHTIB iX MOKHA 3pOOUTH KOPUCHIMHA
1 1715t o0uMCIeHHsT eHepril B3aeMoii B Oy/Ab-SIKHX BHUIAJKaX, B SKHX (QIrypyroTh cdepoinanbHi 00'€KTH 3 PIBHOMIPHO
PO3MOIIICHUM 3apsiIoM a00 Maco¥o.
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SHEPI'US BBAUMOJAENCTBUS IBYX PABHOMEPHO 3APSI)KEHHBIX COEPOU/IOB.
MNPUMEP JE®@OPMHUPOBAHHOI'O SAIPA

PaccmaTpuBaeTcs BONpOC BBIYHCICHUS SHEPTHM B3aMMOJACHCTBHS JIBYX PAaBHOMEPHO 3apsDKEHHBIX C(epomIoB.
[IporpaMmHO peann30BaHBI TPH CIydas: B3aMMOIECHCTBHE PAaBHOMEPHO 3apsHKEHHOTO Ceponsa ¢ TOUSHHBIM 3apsIoM,;
B3aMMOJICHCTBHE IBYX COOCHBIX c(eponzoB; oOmuii ciiydail B3aMMHOTO pacHoioxeHus cdepounos. IlpuBeneHHbIC
MIPOTpPaMMbl N3HAYAJIbHO OPUEHTHUPOBAHBI HA IIPOBEACHHE SIEPHBIX pacueToB. OIHAKO 3aMEHON YHCIEHHBIX KO3 H-
IHEHTOB MX MOXKHO CJIENIaTh MOJE3HBIMU M JUIA BBIYMCICHUS SHEPTUH B3aHMMOJICHCTBHS B JTIOOBIX CIy4dasiX, B KOTOPBIX
¢burypupyioT cheponaaibHble 0OBEKTHI C PABHOMEPHO PACIIPEIEICHHBIM 3apsIOM HITH MacCOM.

Kniouesvie cnoea: KyJOHOBCKOE B3aMOJIEHCTBHE, PAaBHOMEPHO 3apsDKEHHbIE Cepoubl, MOTEHIMAT PaBHOMEPHO
3apsHKEHHBIX C(EepOHIOoB, B3aMMOAEHCTBHE PaBHOMEPHO 3apsHKEHHOIO cepouza M TOUSUHOro 3apsija, B3aUMOJeH-
CTBHE COOCHBIX c(hepOHIIOB, B3aMMO/ICHCTBIE MTPOU3BOJIHO PACIIONOKEHHBIX cheporI0oB.
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