ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS

УДК 539.171+539.172

https://doi.org/10.15407/jnpae2020.01.021

С. Ю. Межевич¹, А. Т. Рудчик^{1,*}, К. Русек², К. В. Кемпер³, А. А. Рудчик¹, О. А. Понкратенко¹, С. Б. Сакута⁴

¹ Інститут ядерних досліджень НАН України, Київ, Україна ² Лабораторія важких іонів Варшавського університету, Варшава, Польща ³ Відділ фізики Флоридського державного університету, Таллахассі, США ⁴ Національний дослідницький центр «Курчатовський інститут», Москва, Росія

*Відповідальний автор: rudchik@kinr.kiev.ua

МЕХАНІЗМИ РЕАКЦІЇ ¹³С(¹¹B, ¹²С)¹²В ПРИ ЕНЕРГІЇ 45 МеВ ТА ВЗАЄМОДІЇ ЯДЕР ¹²С + ¹²B, ¹²C+^{10,11}В

Досліджено реакцію ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{na6}({}^{11}B) = 45$ MeB для основних станів ядер ${}^{12}C$ і ${}^{12}B$ та збуджених станів ядра ${}^{12}B$. Отримано нові експериментальні дані кутових розподілів диференціальних перерізів реакції. Експериментальні дані проаналізовано за методом зв'язаних каналів реакцій (M3KP). У схему зв'язку включався канал пружного розсіяння ядер ${}^{13}C + {}^{11}B$ та канали одно- й двоступінчастих передач нуклонів і кластерів у цій реакції. У M3KP-розрахунках для вхідного каналу реакції використовувався потенціал Вудса - Саксона (WS), параметри якого було отримано раніше з аналізу експериментальних даних пружного й непружного розсіяння ядер ${}^{11}B + {}^{13}C$, а для вихідного каналу ${}^{12}C + {}^{12}B$ - потеціал WS, параметри якого було отримано з підгонки M3KP-перерізів реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ до експериментальних даних цієї реакції. Необхідні для M3KPрозрахунків спектроскопічні амплітуди (фактори) для переданих у реакції нуклонів і кластерів було обчислено за трансляційно-інваріантною моделлю оболонок. Досліджено прямі механізми передач нуклонів і кластерія реакції при використанні у вихідному каналі реакції параметрів потенціалів взаємодії ядер ${}^{12}C + {}^{12}B + {}^{12}C + {}^{12}B$ Виявлено відмінності цих M3KP-розрахунків реакції, тобто спостерігається прояв «ізотопічного ефекту» потенціалів взаємодії ядра ${}^{12}C$ з ізотопами бору ${}^{10}, {}^{11}, {}^{12}B$.

Ключові слова: ядерна реакція ¹³C(¹¹B, ¹²C)¹²B, метод зв'язаних каналів реакцій, спектроскопічні амплітуди, оптичні потенціали, механізми реакцій.

1. Вступ

Реакції важких іонів з ядрами важливі для отримання інформації про структуру ядер, механізми ядерних процесів, потенціали взаємодії стабільних і нестабільних ядер, спектроскопічні дані збуджень станів ядер тощо. Метою даної роботи було експериментальне дослідження реакції 13 Č(11 B, 12 C) 12 B при енергії $E_{\pi a b}$ (11 B) = = 45 МеВ, вимірювання диференціальних перерізів реакції у повному кутовому діапазоні, аналіз отриманих експериментальних даних реакції за методом зв'язаних каналів реакцій (МЗКР), визначення параметрів потенціалу взаємодії ядер 12 C + 12 B у формі Вудса - Саксона (WS), отримання відомостей про оболонкову й кластерну структуру ядер реакції та про механізми передач нуклонів і кластерів у даній реакції. Особлива увага приділялась дослідженню структурних особливостей нестабільного ядра ¹²В та взаємодії ізобаричних ядер ${}^{12}C + {}^{12}B$.

2. Методика експерименту

Диференціальні перерізи пружного й непружного розсіяння іонів ¹¹В ядрами ¹³С при енергії

 $E_{\text{лаб}}(^{11}\text{B}) = 45 \text{ МеВ та реакцій передач }^{13}\text{C}(^{11}\text{B}, X)$ вимірювались на Варшавському циклотроні U-200P [1]. Мішенню була самопідтримна фольга вуглецю товщиною ~ 500 мкг/см² із 90 %-ним збагаченням ізотопом ^{13}C . Розкид енергії пучка ^{11}B на мішені не перевищував 0,5 %.

Для реєстрації продуктів реакцій використовувався ΔE -E-телескоп з іонізаційною камерою як ΔE -детектором з трьома вхідними вікнами. На виході з камери встановлювались три кремнієві E-детектори товщиною 1,0 мм. Робочим газом в іонізаційній камері був аргон при тиску, втрати енергії продуктами реакцій в якому були еквівалентними втратам у кремнієвому детекторі товщиною 15 мкм.

В експерименті використовувались електроніка типу САМАС та комп'ютерна система SMAN [2] для реєстрації та сортування спектрометричної інформації телескопів у вигляді двовимірних $\Delta E(E)$ -спектрів. Більше відомостей про методики вимірювань подано в роботі [1], де опубліковано результати дослідження пружного й непружного розсіяння ядер ¹³C + ¹¹B при енергії $E_{\rm даб}(^{11}B) = 45$ MeB.

© С. Ю. Межевич, А. Т. Рудчик, К. Русек, К. В. Кемпер, А. А. Рудчик, О. А. Понкратенко, С. Б. Сакута, 2020

Рис. 1. Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³C(¹¹B, X) при енергії $E_{na6}(^{11}B) = 45$ MeB.

Типовий $\Delta E(E)$ -спектр продуктів реакцій ¹³С(¹¹В, X) показано на рис. 1. Видно, що експериментальна методика забезпечувала реєстрацію й ідентифікацію продуктів реакцій із зарядами Z = 3 - 8.

Типові енергетичні спектри для ядер ¹²С і ¹²В з реакції ¹³С(¹¹В, ¹²С)¹²В показано на рис. 2 і 3. Фон наближувався параметризованими функціями сігмоїдального типу за допомогою програми PEAKFIT, а піки експериментальних спектрів - симетричними гауссіанами.

Площі гауссіанів використовувались для обчислення диференціальних перерізів реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ для кутів $\theta_{c.ц.м.}({}^{12}C)$ із спектрів ${}^{12}C$ та кутів $\theta_{c.ц.м.}({}^{12}C) = 180^{\circ} - \theta_{c.ц.м.}({}^{12}B)$ із спектрів ${}^{12}B$. Для абсолютизації перерізів реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ використовувався нормувальний множник пружного й непружного розсіяння іонів ${}^{11}B$ ядрами ${}^{13}C$ [1], що вимірювалось разом із цією реакцією. Похибка абсолютизації диференціальних перерізів реакції не перевищує 20 %.

Рис. 2. Типові енергетичні спектри ¹²С з реакції ¹³С(¹¹В, ¹²С)¹²В при енергії *Е*_{лаб}(¹¹В) = 45 МеВ з неперервним фоном від багаточастинкових реакцій (*a*) та з вилученим фоном (*б*). Криві – симетричні функції Гаусса.

Рис. 3. Типові енергетичні спектри ¹²В з реакції ¹³С(¹¹В, ¹²С)¹²В при енергії $E_{\text{лаб}}(^{11}\text{B}) = 45$ MeB з неперервним фоном від багаточастинкових реакцій (*a*) та з вилученим фоном (*б*). Криві – симетричні функції Гаусса.

3. Аналіз експериментальних даних

Експериментальні дані реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ аналізувались за МЗКР. У схему зв'язку включались пружне й непружне розсіяння ${}^{11}B + {}^{13}C$ та реакції передач, діаграми яких показано на рис. 4.

$$\frac{13C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12B}{12C} + \frac{13C}{11B} \frac{12B}{12C} + \frac{13C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}{11B} \frac{12C}{12B} + \frac{13C}{11B} \frac{12C}$$

Рис. 4. Діаграми механізмів реакції ¹³С(¹¹B, ¹²C)¹²B.

У МЗКР-розрахунках для вхідного та вихідного каналів реакції ¹³С(¹¹В, ¹²С)¹²В використовувалися потенціали WS

$$U(r) = V_0 \left[1 + \exp\left(\frac{r - R_V}{a_V}\right) \right]^{-1} + iW_s \left[1 + \exp\left(\frac{r - R_W}{a_W}\right) \right]^{-1}$$
(1)

та кулонівський потенціал взаємодії рівномірно заряджених куль

$$V_{C}(r) = \begin{cases} Z_{P}Z_{T}e^{2}(3-r^{2}/R_{C}^{2})/2R_{C}, & r \leq R_{C}, \\ Z_{P}Z_{T}e^{2}/r, & r > R_{C}. \end{cases}$$
(2)

Тут

$$R_{i} = r_{i} \left(A_{P}^{1/3} + A_{T}^{1/3} \right) \left(i = V, W, C \right),$$
(3)

де A_P , A_T і Z_P , Z_T — маси й заряди ядер вхідного й вихідного каналів реакції. У розрахунках потенціалу кулонівської взаємодії ядер використовувався параметр $r_C = 1,25$ фм.

Хвильові функції зв'язаних станів нуклонів і кластерів x у ядрах A = C + x обчислювались стандартним способом підгонки глибини V_0 потенціалу WS з параметрами $a_V = 0,65$ фм і $r_V = 1,25 \cdot A^{1/3} / (C^{1/3} + x^{1/3})$ до їхньої енергії зв'язку в ядрах A.

Розрахунки реакції ¹³С(¹¹В, ¹²С)¹²В проводились за допомогою програми FRESCO [3] з використанням для вхідного каналу ¹¹В + ¹³С потенціалу WS, параметри якого отримано в роботі [1] при дослідженні пружного й непружного розсіяння іонів ¹¹В ядрами ¹³С при енергії $E_{na6}(^{11}B) = 45$ МеВ. Параметри потенціалу WS для вихідного каналу ¹²С + ¹²В реакції отримано з підгонки МЗКР–перерізів реакції ¹³С(¹¹В, ¹²С)¹²В до експериментальних даних цієї реакції (табл. 1).

Ядра	$E_{c.u.m.}, MeB$	V_0 , MeB	<i>r</i> _V , фм	<i>а</i> _V , фм	W_S , MeB	<i>r</i> _W , фм	<i>а</i> _{<i>W</i>} , фм	Літ.
$^{13}C + ^{11}B$	24,38	256,7	0,788	0,740	7,0	1,250	0,740	[1]
${}^{12}C + {}^{12}B$	22,80	177,0	0,788	0,740	9,0	1,000	0,600	
$^{12}C + ^{11}B$	22,17	251,0	0,788	0,670	8,0	1,250	0,670	[8]
$^{12}C + ^{10}B$	22,53	100,0	1,150	0,428	15,0	1,300	0,248	[9]

Таблиця 1. Параметри потенціалів WS взаємодії ядер

Необхідні для МЗКР-розрахунків реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ спектроскопічні амплітуди S_x нуклонів і кластерів x у системах A = C + x обчислювались у рамках трансляційно-інваріантної моделі оболонок (ТІМО) [4] за допомогою програми DESNA [5, 6] з використанням таблиць хвильових функцій ядер 1р-оболонки [7]. Значення амплітуд S_x подано в табл. 2.

Кутові розподіли експериментальних даних реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ для основних станів ядер ${}^{12}C$ і ${}^{12}B$ та відповідні МЗКР-розрахунки цієї реакції показано на рис. 5. Видно, що в реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ домінує передача протона (крива), а передача нейтрона (крива <n>) дає незначний внесок у перерізи реакції на великих кутах. Внески двоступінчастих передач d + n i n + d (крива < dn >, когерентна сума), d + t i t + d (кри-

ва < dt >), d + p i p + d (крива < dp >), α + t i t + α (крива < α t >), α + ³He i ³He + α (крива < α ³He >), d + ³He i ³He + d (крива < d³He >) у перерізи цієї реакції незначні. Суцільною кривою < Σ > показано когерентну суму всіх реакцій передач.

На рис. 6 показано порівняння сумарних (< Σ >) МЗКР-перерізів реакції ¹³C(¹¹B, ¹²C)¹²B, обчислених при використанні для потенціалу взаємодії ядер ¹²C + ¹²B параметрів, отриманих у цій роботі, та параметрів взаємодії ядер ¹²C + ¹¹B [8] і ¹²C + ¹⁰B [9] (див. табл. 1). Видно помітну різницю МЗКР-перерізів реакції ¹³C(¹¹B, ¹²C)¹²B в області середніх кутів при використанні параметрів потенціалів взаємодії ядер ¹²C + ¹²B, ¹²C + ¹¹B [8] та ¹²C + ¹⁰B [9]. Це є «ізотопічний ефект» як прояв відмінності потенціалів взаємодії ядер ¹²C + ¹²B.

A	C	<i>x</i>	nL_J	S_x
¹¹ B	⁸ Li	³ He	$2P_{1/2}$	0,160 ^(a)
			$1F_{5/2}$	0,218 ^(a)
			$1F_{7/2}$	0,214
$^{11}\mathbf{B}$	⁸ Be	t	$2P_{3/2}$	0,641
${}^{11}B$	⁹ Be	d	$2S_1$	$-0,607^{(a)}$
			$1D_1$	-0,109 ^(a)
			$1D_{3}$	0,610 ^(a)
${}^{11}B$	¹⁰ Be	р	$1P_{3/2}$	0,699
${}^{11}B$	$^{10}\mathbf{B}$	n	$1P_{3/2}$	$-1.347^{(a)}$
$^{12}\mathbf{B}$	⁸ Li	α	$2D_2$	0,496 ^(a)
$^{12}B_{0.95}$	⁸ Li	α	$3S_0$	-0.411
.,, .			$2D_2$	-0.325
			$1G_4$	0.205
$^{12}B_{1.67}$	⁸ Li	α	$3P_1$	-0.411 ^(a)
21,07		ű	$2F_3$	-0.325 ^(a)
$12\mathbf{B}$	⁹ Be	t	$2P_{1/2}$	0,525 0.102 ^(a)
D	DC	ι	$2P_{2/2}$	0.091
			$1 E_{5/2}$	0.512 ^(a)
$12 \mathbf{R}_{0.05}$	⁹ Be	t	2P _{1/2}	0.227
D 0,95	DC	ι	1 <i>E</i> _{1/2}	-0,237
	-		11 ⁻ 5/2	-0,323 0.216 ^(a)
120	⁹ P o	+	2 S	0,310
D 1,67	be	l	331/2 1C	-0,237
			165/2	-0,323
120	10 D -	.1	1G7/2	0,316
¹² B	¹⁰ Be	0 d	$1D_1$	0,380
B0,95	10 D e	d	$1D_2$	0,380
12p		u	1 <i>Г</i> 2	0,580
D	D	11	1 <i>Г</i> 1/2	-0,142
12D	110		1 <i>F</i> 3/2	-0,127(*)
B 0,95	- B	n	$1P_{1/2}$	0,270
12 D			25	0,270
¹² D	11 D	<u> 11</u>	2S1/2	0,330
12D	11 D	n	2S1/2	0,330
D 2,62	В	11	201/2 1 D	-0,142(**)
120	110		1D3/2	-0,12/
¹² B _{2,72}	**B	n	1P _{3/2}	0,478
¹² C	°Be	α	350	0,822
¹² C	⁹ Be	°He	$2P_{3/2}$	1,224 ^(a)
¹² C	¹⁰ B	d	$1D_3$	1,780
¹² C	¹¹ B	р	$1P_{3/2}$	$-1,706^{(a)}$
¹³ C	⁹ Be	α	$2D_2$	0,504 ^(a)
¹³ C	^{10}Be	³ He	$2P_{1/2}$	0.170

Таблиця 2. Спектроскопічні амплітуди нуклонів і кластерів *x* у ядрах *A* = *C* + *x*

Α	С	X	nL_J	S_x
¹³ C	$^{10}\mathbf{B}$	t	$1F_{5/2}$	0,109 ^(a)
			$1F_{7/2}$	0,747
^{13}C	${}^{11}B$	d	$2S_1$	-0,263
			$1D_1$	-0,162
			$1D_2$	-0,485 ^(a)
¹³ C	$^{12}\mathbf{B}$	р	$1P_{1/2}$	$-0,694^{(a)}$
			$1P_{3/2}$	0,245
¹³ C	$^{12}B_{0,95}$	р	$1P_{3/2}$	$-0,736^{(a)}$
¹³ C	$^{12}B_{1,67}$	p	$1D_{3/2}$	$-0,736^{(a)}$
^{13}C	${}^{12}B_{2,62}$	p	$1S_{1/2}$	$-0.694^{(a)}$
	· · · · ·		$1D_{3/2}$	0,245
¹³ C	$^{12}B_{2,72}$	р	$1P_{1/2}$	-0.375
¹³ C	$^{12}B_{3,39}$	p	$1D_{5/2}$	-0.628
¹³ C	$^{12}B_{3.76}$	1	$1P_{3/2}$	$-0.601^{(a)}$
¹³ C	^{12}C	n	$1P_{1/2}$	0.601
¹⁴ C	¹¹ B	t	$2P_{3/2}$	$-0.368^{(a)}$
¹⁴ C	^{12}B	d	$1D_1$	-1.010
^{14}C	$^{12}B_{0.95}$	d	$1D_2$	-1.304
^{14}C	$^{12}B_{1.67}$	d	$1P_2$	-1.304
^{14}C	¹³ C	n	$1P_{1/2}$	$-1.094^{(a)}$
¹⁴ N	¹¹ B	³ He	$2P_{1/2}$	$-0.107^{(a)}$
			$2P_{3/2}$	-0.096
			$1F_{5/2}$	$-0.292^{(a)}$
¹⁴ N	^{12}C	d	$1D_1$	0.246
¹⁴ N	^{13}C	p	$1P_{1/2}$	0.461
		r	$1P_{3/2}$	0,163 ^(a)
¹⁵ N	${}^{11}B$	α	$2D_2$	0,435 ^(a)
¹⁵ N	${}^{12}B$	³ He	$2P_{1/2}$	0,254 ^(a)
			$2P_{3/2}$	-0,090
¹⁵ N	${}^{12}B_{0,95}$	³ He	$2P_{3/2}$	0,269 ^(a)
			$1F_{5/2}$	-0,274
¹⁵ N	${}^{12}B_{1,67}$	³ He	$2D_{3/2}$	0,269 ^(a)
¹⁵ N	^{12}C	t	$2P_{1/2}$	0,380
¹⁵ N	¹³ C	d	$2S_1$	0,248 ^(a)
			$1D_1$	0,444 ^(a)
¹⁶ N	$^{12}\mathbf{B}$	α	$4P_1$	-0,384
^{16}N	$^{12}B_{0,95}$	α	$3P_1$	-0,411 ^(a)
			$2F_3$	-0,325 ^(a)
¹⁶ N	$^{12}B_{1,67}$	α	$3S_0$	-0,411
¹⁶ N	¹³ C	t	$2D_{3/2}$	-0,194
¹⁶ O	^{12}C	α	$3S_0$	0,544
¹⁶ O	¹³ C	³ He	$2P_{1/2}$	0,910 ^(a)

^(a)
$$S_{FRESCO} = (-1)^{J_C + j - J_A} \cdot S_x = -S_x.$$

Рис. 5. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a \bar{b}}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{12}C$ і ${}^{12}B$. Криві — МЗКР-розрахунки з потенціалом WS (див. табл. 1) для різних механізмів реакції.

Рис. 6. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для основних станів ядер ${}^{12}C$ і ${}^{12}B$. Криві – МЗКР розрахунки з різними параметрами потенціалу взаємодії ядер ${}^{12}C + {}^{12}B$ (див. табл. 1).

На рис. 7 показано експериментальні дані та МЗКР-розрахунки для реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{na6}({}^{11}B) = 45$ МеВ для збуджених станів 0,953 МеВ (2⁺) та 1,674 МеВ (2⁻) ядра ${}^{12}B$. Кривими та <n> показано МЗКР-перерізи для передач протонів та нейтронів відповідно, а кривими Σ_{2st} - когерентні суми двоступінчастих процесів. Суцільними кривими Σ показано когерентні суми одно- та двоступінчастих процесів. Видно, що й для цих збуджених станів ядра ${}^{12}B$ внесок двоступінчастих процесів є незначним, а домінують передачі протонів і нейтронів.

Рис. 7. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ МеВ для збуджених станів 0,953 МеВ (2⁺) та 1,674 МеВ (2⁻) ядра ${}^{12}B$. Криві – МЗКР-розрахунки для різних реакцій передач (див. текст).

На рис. 8 показано експериментальні дані та МЗКР-розрахунки для реакції ¹³C(¹¹B, ¹²C)¹²В при енергії $E_{\rm лаб}(^{11}\text{B}) = 45$ МеВ для збуджених станів 2,62 МеВ (1⁻) та 2,72 МеВ (0⁺) ядра ¹²В (не розділені в експерименті). Штриховими кривими $\Sigma_{2,62}$ та $\Sigma_{2,72}$ показано когерентні суми МЗКР-перерізів передач протонів і нейтрона для збуджених станів 2,62 МеВ (1⁻) та 2,72 МеВ (0⁺) ядра ¹²В, а суцільною кривою Σ - некогерентну суму МЗКР-перерізів реакції ¹³C(¹¹B, ¹²C)¹²В для цих станів ядра ¹²В. Видно, що домінуючий внесок у цю некогерентну суму перерізів реакції вносить перехід ядра ¹²В у збуджений стан 2,62 МеВ (1⁻).

Рис. 8. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a 6}({}^{11}B) = 45$ MeB для збуджених станів 2,62 MeB (1⁻) та 2,72 MeB (0⁺) ядра ${}^{12}B$ (не розділені в експерименті). Криві – МЗКР-перерізи для різних процесів (див. текст).

На рис. 9 показано експериментальні дані та МЗКР-розрахунки для реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a \delta}({}^{11}B) = 45$ МеВ для переходів у збу-

джені стани 3,388 МеВ (3⁻) та 3,76 МеВ (2⁺) ядра ¹²В. Кривими показано МЗКР-перерізи для передач протонів.

Рис. 9. Диференціальні перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{\pi a b}({}^{11}B) = 45$ MeB для збуджених станів 3,388 MeB (3⁻) та 3,76 MeB (2⁺) ядра ${}^{12}B$. Криві – МЗКР-перерізи для передач протонів.

Основні результати та висновки

Отримано нові експериментальні дані диференціальних перерізів реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при енергії $E_{na\delta}$ (${}^{11}B$) = 45 МеВ для основних станів ядер ${}^{12}C$ і ${}^{12}B$ та збуджених станів 0,953 – 3,76 МеВ ядра ${}^{12}B$. Експериментальні дані реакції проаналізовано за МЗКР. У схему зв'язку включались канали пружного розсіяння ядер ${}^{11}B + {}^{13}C$ і реакцій одно- та двоступінчастих передач нуклонів і кластерів.

У МЗКР-розрахунках для вхідного каналу реакції використовувався потенціал WS, одержаний з МЗКР-аналізу експериментальних даних пружного розсіяння ядер ¹¹В + ¹³С при енергії $E_{\rm лаб}$ (¹¹В) = 45 МеВ [1]. Необхідні для МЗКРрозрахунків перерізів реакції спектроскопічні амплітуди нуклонів і кластерів в ядрах було обчислено в рамках ТІМО [4] за допомогою програми DESNA [6]. Квадратами цих амплітуд визначаються спектроскопічні «фактори» нуклонів і кластерів в ядрах.

У результаті МЗКР-аналізу експериментальних даних реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ отримано відомості про механізми реакції та параметри потенціалу WS взаємодії ядер ${}^{12}C + {}^{12}B$. Установлено, що в даній реакції основну роль відіграють передачі нейтронів і протонів. Внески двоступінчастих передач нуклонів і кластерів у перерізи реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ незначні.

Проведено порівняння параметрів потенціалів WS взаємодії ядер ${}^{12}C + {}^{12}B$, ${}^{12}C + {}^{11}B$ [8] і ${}^{12}C + {}^{10}B$ [9] та M3КР-перерізів реакції ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ при використанні їх у вихідному каналі реакції. Виявлено відмінності цих перерізів в основному в інтервалі середніх кутів («ізотопічні ефекти»).

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the ${}^{12,13}C + {}^{11}B$ scattering. Nucl. Phys. A 724 (2003) 29.
- 2. M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Report (Warsaw University, 1998).
- I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 4. Yu.F. Smirnov, Yu.M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 5. А.Н. Бояркина. Структура ядер 1р-оболочки (Москва: Изд-во Москов. ун-та, 1973) 62 с.
- 6. А.Т. Рудчик, Ю.М. Чувильский. Вычисление спектроскопических амплитуд для произвольных

ассоциаций нуклонов в ядрах 1р-оболочки (программа DESNA). Препринт Ин-та ядерных исслед. АН УССР. КИЯИ-82-12 (Киев, 1982) 27 с.

- А.Т. Рудчик, Ю.М. Чувильский. Спектроскопические амплитуды многонуклонных кластеров в ядрах 1р-оболочки и анализ реакций многонуклонных передач. УФЖ 30(6) (1985) 819.
- 8. A.T. Rudchik et al. The ¹¹B + ¹²C elastic and inelastic scattering at $E_{lab}(^{11}B) = 49$ MeV and energy dependence of the ¹¹B + ¹²C interaction. Nucl. Phys. A 695 (2001) 51.
- N. Burtebayev et al. Measurement and analysis of ¹⁰B + ¹²C elastic scattering at energy of 41.3 MeV. Int. J. Mod. Phys. E 28 (2019) 1950028.

С. Ю. Межевич¹, А. Т. Рудчик^{1,*}, К. Русек², К. В. Кемпер³, А. А. Рудчик¹, О. А. Понкратенко¹, С. Б. Сакута⁴

¹ Институт ядерных исследований НАН Украины, Киев, Украина ² Лаборатория тяжелых ионов Варшавского университета, Варшава, Польша ³ Физический факультет Флоридского государственного университета, Таллахасси, США ⁴ Национальный исследовательский центр «Курчатовский институт», Москва, Россия

*Ответственный автор: rudchik@kinr.kiev.ua

МЕХАНИЗМЫ РЕАКЦИИ ¹³C(¹¹B, ¹²C)¹²В ПРИ ЭНЕРГИИ 45 МэВ И ВЗАИМОДЕЙСТВИЯ ЯДЕР ¹²C + ¹²B, ¹²C + ^{10,11}В

Исследована реакция ¹³C(¹¹B, ¹²C)¹²B при энергии $E_{na6}(^{11}B) = 45$ МэВ для основных состояний ядер ¹²C и ¹²B и возбужденных состояний ядра ¹²B. Получены новые экспериментальные данные угловых распределений дифференциальных сечений реакции. Экспериментальные данные проанализированы по методу связанных каналов реакций (МСКР). В схему связи включался канал упругого рассеяния ядер ¹³C + ¹¹B и каналы одно- и двухступенчатых передач нуклонов и кластеров в этой реакции. В МСКР-расчетах для входного канала реакции использовался потенциал Вудса - Саксона (WS), параметры которого были ранее получены из анализа экспериментальных данных упругого и неупругого рассеяния ядер ¹¹B + ¹³C, а для выходного канала ¹²C + ¹²B реакции – потенциал WS, параметры которого были получены из подгонки МСКР-сечений реакции ¹³C(¹¹B, ¹²C)¹²B к экспериментальным данным этой реакции. Нужные для МСКР-расчетов спектроскопические амплитуды (факторы) переданных в реакции нуклонов и кластеров были рассчитаны по трансляционно-инвариантной модели оболочек. Исследованы прямые механизмы передач нуклонов и кластеров в реакции. Получены параметры потенциала взаимодействия ядер ¹²C + ¹²B и проведено сравнение МСКР-сечений реакции при использовании в выходном канале реакции параметров потенциалов взаимодействия ядер ¹²C + ¹²B и потенциалов взаимодействия ядер ¹²C + ¹²B и ¹²C + ¹²B. Обнаружены отличия этих МСКР-сечений реакции, т.е. наблюдается проявление «изотопического эффекта» потенциалов взаимодействия ядер ¹²C и ¹²C и ¹⁰.

Ключевые слова: ядерная реакция ¹³С(¹¹В, ¹²С)¹²В, метод связанных каналов реакций, спектроскопические амплитуды, оптические потенциалы, механизмы реакций.

S. Yu. Mezhevych¹, A. T. Rudchik^{1,*}, K. Rusek², K. W. Kemper³, A. A. Rudchik¹, O. A. Ponkratenko¹, S. B. Sakuta⁴

¹ Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
² Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
³ Physics Department, Florida State University, Tallahassee, USA
⁴ National Research Center «Kurchatov Institute», Moscow, Russia

*Corresponding author: rudchik@kinr.kiev.ua

$^{13}\mathrm{C}(^{11}\mathrm{B},\,^{12}\mathrm{C})^{12}\mathrm{B}$ REACTION MECHANISMS AT 45 MeV AND INTERACTION OF $^{12}\mathrm{C}$ + $^{12}\mathrm{B},\,^{12}\mathrm{C}$ + $^{10,11}\mathrm{B}$ NUCLEI

The reaction ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ at $E_{lab}({}^{11}B) = 45$ MeV was investigated for the ground states of ${}^{12}C$ and ${}^{12}B$ nuclei and excited states of ${}^{12}B$ nucleus. New experimental data for the angular distributions of the reaction cross-sections were obtained. The experimental data were analyzed within the coupled-reaction-channels method (CRC). The ${}^{13}C + {}^{11}B$ elastic scattering channel as well as channels for one- and two-step transfers of nucleons and clusters were included in the coupling scheme. The Woods - Saxon (WS) potential was used in the CRC-calculations for the entrance reaction channel with parameters deduced previously from the analysis of the experimental data of ${}^{11}B + {}^{13}C$ elastic and inelastic scattering, whereas the WS potential for the exit ${}^{12}C + {}^{12}B$ reaction channel was deduced from the fitting of CRC cross-sections to the ${}^{13}C({}^{11}B, {}^{12}C){}^{12}B$ reaction experimental data. Needed for CRC-calculations spectroscopic amplitudes (factors) of the nucleons and clusters transferred in the reaction were calculated within the translational-invariant shell model. The direct mechanisms of the transfers of nucleons and clusters were investigated in this reaction. The ${}^{12}C + {}^{12}B$ and ${}^{12}C + {}^{10}{}^{11}B$ potential parameters were deduced and comparisons of the CRC reaction cross-sections calculated with the ${}^{12}C + {}^{12}B$ and ${}^{12}C + {}^{10}{}^{11}B$ potential parameters were performed. The differences between these CRC calculations were observed. The "isotopic effects" were observed for the potentials of ${}^{12}C$ interactions with boron isotopes ${}^{10}, {}^{11}, {}^{12}B$.

Keywords: nuclear reaction ¹³C(¹¹B, ¹²C)¹²B, coupled-reaction-channels method, spectroscopic amplitudes, optical potentials, reaction mechanisms.

REFERENCES

- 1. S.Yu. Mezhevych et al. The ${}^{13}C + {}^{11}B$ elastic and inelastic scattering and isotopic effects in the ${}^{12,13}C + {}^{11}B$ scattering. Nucl. Phys. A 724 (2003) 29.
- M. Kowalczyk. SMAN: a Code for Nuclear Experiments. Report (Warsaw University, 1998).
- 3. I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7 (1988) 167.
- 4. Yu.F. Smirnov, Yu. M. Tchuvil'sky. Cluster spectroscopic factors for the *p*-shell nuclei. Phys. Rev. C 15 (1977) 84.
- 5. A.N. Boyarkina. *The structure of the 1p-shell nuclei* (Moskva: Moscow University, 1973) 62 p. (Rus)
- 6. A.T. Rudchik, Yu.M. Chuvil'skij. Calculation of spectroscopic amplitudes for arbitrary associations

of the nucleus in 1p-shell nuclei (program DESNA). Preprint of the Institute for Nucl. Res. AS UkrSSR. KINR-82-12 (Kyiv, 1982) 27 p. (Rus)

- A.T. Rudchik, Yu.M. Chuvil'skij. Spectroscopic amplitudes of multinucleon clusters in 1p-shell nuclei and analysis of multinucleon transfer reactions. Ukrainian Journal of Physics 30(6) (1985) 819. (Rus)
- 8. A.T. Rudchik et al. The ¹¹B + ¹²C elastic and inelastic scattering at $E_{lab}(^{11}B) = 49$ MeV and energy dependence of the ¹¹B + ¹²C interaction. Nucl. Phys. A 695 (2001) 51.
- N. Burtebayev et al. Measurement and analysis of ¹⁰B + ¹²C elastic scattering at energy of 41.3 MeV. Int. J. Mod. Phys. E 28 (2019) 1950028.

Надійшла / Received 25.09.2019