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ENERGY DENSITY FUNCTIONAL AND SENSITIVITY OF ENERGIES
OF GIANT RESONANCES TO BULK NUCLEAR MATTER PROPERTIES

We provide a short review of the current status of the nuclear energy density functional (EDF) and the theoretical
results obtained for properties of nuclei and nuclear matter. We will first describe a method for determining the parameters
of the EDF, associated with the Skyrme type effective interaction, by carrying out a Hartree - Fock (HF)-based fit to the
extensive set of data of ground-state properties and constraints. Next, we will describe the fully self-consistent HF-based
random-phase-approximation (RPA) theory for calculating the strength functions S(E) and centroid energies E.., of
giant resonances and the folding model (FM) distorted wave Born approximation (DWBA) to calculate the excitation
cross-section of giant resonances by o scattering. Then we will provide results for: (i) the Skyrme parameters of the
KDEOv1 EDF; (ii) consequences of violation of self-consistency in HF-based RPA; (iii) FM-DWBA calculation of exci-
tation cross-section; (iv) values of the E., of isoscalar and isovector giant resonances of multipolarities L =0-3 for a
wide range of spherical nuclei, using 33 EDFs associated with the standard form of the Skyrme type interactions, com-
monly employed in the literature; and (v) the sensitivities E.., of the giant resonances to bulk properties of nuclear

matter (NM). We also determine constraints on NM properties, such as the incompressibility coefficient and effective
mass, by comparing with experimental data on E_., of giant resonances.
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1. Introduction

The atomic nucleus is a fascinating and important
laboratory for the study of properties of a many-body
system with strongly interacting constituents. Energy
density functional (EDF) theory provides a powerful
approach for theoretical calculations of properties of
many-body systems. It is based on a theorem [1] for
the existence of a universal EDF that depends on the
densities of the constituents and their derivatives,
which leads to the exact value for the ground state en-
ergy by minimization procedure. However, the main
challenge is to find the EDF. An important task of the
nuclear physics community is to develop a modern
EDF which accounts for the effects of few-body and
many-body correlations and provides enhanced pre-
dictive power for properties of nuclei and nuclear
matter (NM), such as the NM incompressibility coef-

ficient, K, , and the density dependence of the sym-

metry energy, E needed for determining the

sym !
equation of states (EOS) of symmetric and asymmet-
ric NM (ANM). It is well-known that knowledge of
the NM equation of state is very important in the
study of properties of nuclei, heavy-ion collisions and
astrophysical phenomena [2, 3].

The phenomena of collective motions of strongly
interacting nucleons in the many-body system of the
atomic nucleus have been the subjects of experimental
and theoretical investigations for many decades [4 —7].
Of particular interest are the determination of proper-
ties of isoscalar (isospin T =0) and isovector (T =1)
giant resonances of various multipolarities [8]. Over
the years the strength function distributions, S(E), and

centroid energies, E. , of isoscalar and isovector gi-
ant resonances are sensitive to physical quantities of
NM, such as the incompressibility coefficient Ky, ,

and the effective mass m*/m. The resulting con-
straints on the values of the bulk properties of NM can
be used to determine the next generation EDF [9], with
improved predictive power. We point out that in the
following we present a short review of the current sta-
tus of the nuclear EDF and the theoretical results ob-
tained for properties of giant resonances in nuclei and
of NM. For more extended reviews on the nuclear EDF
and properties of giant resonances in nuclei and of NM,
see Refs. [10 — 12] and references therein.

Since the earlier work of Brink and Vautherin
[13], continuous efforts have been made to readjust
the parameters of the Skyrme-type effective nucleon-
nucleon (NN) interaction [14, 15] to improve the
theoretical prediction of properties of nuclei [10, 16].
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Many Skyrme type effective NN interactions of dif-
ferent forms were obtained by fitting the Hartree —
Fock (HF) results to selected sets of experimental
data [10, 16]. We emphasize that here we consider a
specific standard form of the Skyrme type interaction,
with ten (10) parameters [17]. We note that for fixed
values for the nuclear matter properties the corre-
sponding values for the Skyrme parameters can be de-
termined by using the relations between the bulk
properties of symmetric nuclear matter and the
Skyrme parameters [9]. However, this is not possible
due to the experimental uncertainties in the values of
nuclear matter properties. It is common to determine
the parameters of the Skyrme interaction by fitting
experimental data on bulk properties of nuclei, such
as binding energies and charge radii, and include the
experimental data on nuclear matter properties as
constraints. It is very important to note that in deter-
mining the parameters of the Skyrme interaction, var-
ious approximations, concerning: (i) the values of the
neutron and proton masses; (ii) the spin-density terms
may be ignored; (iii) the Coulomb exchange term is
approximated or ignored; (iv) the center of mass cor-
rection to the energy is approximated. These approx-
imations should be taken into account for a proper ap-
plication of the specific interaction. In the following,
we describe the method of determining the parame-
ters of the very successful modern KDEOv1 Skyrme
interaction [9] by a fit of the HF results to extensive
experimental data of ground-state properties of the
wide range of nuclei, excitation energies of the
isoscalar giant monopole and including constraints
such as the Landau stability conditions for nuclear
matter.

In the next section we provide a short review of
the formalism including: (i) the standard form of the
Skyrme type interaction with ten (10) parameters and
the corresponding EDF with the HF method for cal-
culating ground state properties of nuclei; (ii) the
RPA approach for calculating strength functions

S(E) and the centroid energies E.g, of isoscalar and

isovector giant resonances; (iii) the Folding-model
(FM) distorted wave Born approximation (DWBA)

for calculating excitation cross-section for giant reso-
nances, and; (iv) the EOS of symmetric and ANM in
terms of bulk properties of NM. In section 3 we pre-
sent: (i) results of calculations of determination of the
parameters of the standard Skyrme interaction; (ii)
pointing out the consequences of carrying out fully
self-consistent HF-based random-phase-approxima-
tion (RPA) calculations of S(E) and E.g, of giant
resonances; (iii) pointing out the importance of carry-
ing out microscopic calculations of excitation cross-
sections of giant resonances; (iv) demonstrate the im-
portance of carrying out a proper comparison between
relativistic and non-relativistic calculations of E.g,,
and; (v) present results of the calculated centroid en-
ergies, Eg, of isoscalar (T =0) and isovector
(T =1) giant resonances of multipolarity L=0-3
in 4°%Ca, BNi, %zr, 11%Sn, *“Sm, and 2°%Pb nuclei,
within fully self-consistent spherical HF-based RPA
theory, using 33 effective NN Skyrme type interac-
tions of the standard form. We also calculate the Pear-
son linear correlation coefficient to investigate the
sensitivity of the E.g, of each giant resonance of spe-
cific isospin and multipolarity to each bulk property
of NM, such as the incompressibility coefficient,
Kyw » the effective mass m*/m, the symmetry en-

ergy coefficientsat p,: J = E_, [p,], and its firstand

second derivatives L and K, , respectively, and k

sym 1
, the enhancement coefficient of the energy weighted
sum rule (EWSR) of the isovector giant dipole reso-
nance (IVGDR). By comparing to experimental data,
we determined constraints on the properties of NM.
In section 4, we present our summary and conclu-
sions.

2. Formalism
2.1. Skyrme EDF

We adopt the following standard form for the
Skyrme type effective NN interaction [17]:

(e} 1 (e} " "
V12 = to(1+ X0P12)6(r1 - rz) + Etl(1+ X1P12)[k122 B(rl - rz) + S(rl - rz) k122] +

(e} » ” 1 (e} o
+ t2 (1+ X2P12) k126(l’1 - I’2) k12 + Et?,(l"' Xsplz)P (

L+h

jsm—rz)+

+iW, ky, 8(r, — 1,)(0, +6,) Ky, (1)

where t,, X;, o, and W, are the ten (10) parameters

(o

of the interaction and P, is the spin-exchange opera-

tor, (o} is the Pauli

spin  operator,
Ky, ==i(V,=V,)/2, and k,=-i(V,-V,)/2.

Here, the right and left arrows indicate that the mo-
mentum operators act on the right and the left, respec-
tively. The Skyrme energy-density functional H(r),

associated with the interaction of Eq. (1), is given by
[17],
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H=K+H,+H;+H, +H

fin

+ Hso + Hsg + HCoul ’
)
hZ
where K =2—1 is the kinetic-energy term. For the
m

Skyrme interaction of Eg. (2), we have

t0|:(2+X0)p2

Ho=3 (2% +1)(p2+p2)]. @

1
Hy =—t;p*

- [(2+ X,)p? = (2%, +1)(p? +p )] . (4)

Hy = %[Q(ZJF X )+, (2+%,) [tp+
+é[t2(zx2+1)_t1(2Xl+l)j|(Tppp+’cnpn) ' (5)

H, =— [3t1 (2+%)-1,(2+%,)](Vp)’ -
_3_12[3t1(2x1 +1)+1,(2x, +1)][(Vpp)2 +(Vpn)2} ,
(6)

H,, :\%[J-Verxw(Jp-VppHn -Vpn)], (7

Hy, = 11 (X, +1,%,)J? (t1 t )[JiHﬁ]. (8)

Here, H, is the zero-range term, H, the density-de-

pendent term, H., an effective-mass term, H;, a fi-
nite-range term, Hg, a spin-orbit term, HSg is a term

that is due to tensor coupling with spin and gradient
and H.,, is the contribution to the energy-density
hZ

2m.(r)

AU+ "

that is due to the Coulomb interaction. In Egs. (3) —
), p=p,+p,, T=T,+7, and J=J +J, are the
particle number density, kinetic-energy density, and
spin-density, respectively, with p and n denoting
the protons and neutrons, respectively. Note that the
additional parameter x,, introduced in Eq. (7), al-
lows us to modify the isospin dependence of the spin-
orbit term. We have wused the value of
h*/2m=20.734 MeV fm? in determining the pa-
rameters of the Skyrme interaction KDEOv1. We
would like to emphasize that we have included the
contributions from the spin-density term as given by
Eqg. (8), which is ignored in many Skyrme HF calcu-
lations. Although the contributions from the Eg. (8)
to the binding energy and charge radii are not very
significant, they are very crucial for the calculation of
the Landau parameter G; . The corresponding mean-

field V,. and the total energy E of the system are
given by
Ve =—)\ E:jH(r)dr, 9)
where, the Skyrme energy-density functional H(r),
is given in Eq. (2).
In a spherical nucleus, the single-particle wave

function can be written as a product of the radial func-
tion R (r), the spherical harmonic function Y, (r,c)

, and the isospin function A, (T)

¢y (r,0,7) =

Yiim (1,0)%m (1) -

R,(1) 1)
r

Assuming a closed-shell spherical nucleus, we use
Eg. (10) to achieve the final form of the HF equations
for spherical coordinates:

i)+ o ”’R()}——(Z . )J Ri(r) +

1d
rdrl2m’ (r)

where m:(r), U_(r) and W_(r) are the effective

mass, the single-particle potential, and the spin-orbit
potential, respectively. They are given in terms of the
Skyrme parameters and the nuclear densities. An ini-
tial guess is taken for the single-particle wave func-
tions such as WS wave functions. The HF equations
are then solved by iteration.
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{jn(ml)—n :
]+

(I +1)—}
———Hwm RO =5R,0).

11)

2.2. Self-consistent HF-based RPA

The response function S(E) of the many-body
system to an external field described by the single-
particle operator, F = Z f(r), is given by [18]
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S(E)=Y [(0F|v)[8(E-E,)=

=£Imjwdrdr’ f(NG(r,r',E)f(r"), (12)
T 0

where G is the particle-hole Green function and the
sum is over all RPA states v of energy E_ . The tran-

sition density p, associated with the strength in the
region E + AE is obtained from:

lImG(r’,r,E)}dr

AE o,
)_«/S(E)AE fo f(r){n

(13)
The RPA Green function is given by
-1
G =GO 1—ﬂG(°’ : (14)
op

Here, V is the HF potential, having a functional de-
pendence on p, the density. The unperturbed Green

function G is given in terms of the HF Hamiltonian
H , its occupied eigenstates ¢, , and the correspond-

ing eigenenergies ¢, , as

G(O)(rlr h,®) = _Zh ¢ (1) %

1 1
X[H—eh—m+w4—sh+mj¢dey (19)

The sum in (15) is on the occupied states; (H —E)™

is the HF Green function for a single particle propa-
gated from r, to r,.

The electromagnetic single-particle scattering
operator for the isoscalar (T =0) excitation of multi-

polarity L is given by [19],
F = Zi f(r)Y,(),

and the corresponding isovector (T =1) single-parti-
cle scattering operator is given by,

(16)

%Zn f(rn)YLO(n)—%zp f(r,)Yw(p)- (17)

The S(E) of the different multipolarities is then de-
termined by: f(r)=r?, for the isoscalar and isovec-
tor monopole (L=0) and quadrupole (L=2),
f(r)=r® for the octupole (L=3), f(r)=r for the
isovector dipole (T =1 L=1), and lastly
f(r)=r’~(5/3)(r*)r for the isoscalar dipole

(T=0, L=1). We point out that for the isoscalar

dipole we subtract the contribution from the spurious
state [20, 21]. We calculate the energy moments of
the S(E) using

m, = [ E*S(E)dE, (18)

where E, —E, is the appropriate experimental exci-

tation energy range. The centroid energies of the re-
sonances are then obtained using:

Ecen =My /my,.

For E, =0 and E, = o, the first energy moment, m,,
of the isoscalar operator F, may also be directly
obtained from the HF ground state wave function:

(19)

1 n
m,(L,T =0)=
i )42

thus, leading to the EWSR [4]. In Eq. (20) p(r) is the

ground state density obtained from the HF ground
state of the nucleus, while g, (r) depends on the

multipolarity, L, andits f(r):

g.(n= (i)z +L(L +1)(ij2.
dr r

The isovector EWSR is related to Eq. (20) by:

[ 9.(np(r)anrdr, (20)

(21)

m,(L,T = 1)— m(LT =0)[L+x—x,], (22)

where « is an enhancement coefficient which is due
to the momentum dependence of the effective NN
interaction, given for the standard Skyrme-type inter-
action Eq. (1) by:

(1/2)[tl(1+x 12)+t,(1+x, /2)]
(h* 12m)(4N Z | A?)

2] 9.(p, (e, () 4rrdr
[ (r)p(r)anr’dr

) (23)

while the correction factor i, arises from the small

differences between the neutron and proton densities,
or in other words because

pa()—p, (1) %

—Z p(r), and is obtained from:

__(N-2) A [9.(D[Zp,(r)=Np,(D]4nr’dr
" A NZ [0, (p(r) 4nrar

(24)

116 ISSN 1818-331X NUCLEAR PHYSICS AND ATOMIC ENERGY 2020 Vol. 21 No. 2



ENERGY DENSITY FUNCTIONAL AND SENSITIVITY OF ENERGIES OF GIANT RESONANCES

We note that here we adopt the methods of Refs.
[18, 19, 22] in the numerical evaluation of the
strength functions and centroid energies of the giant
resonances.

2.3. DWBA calculations of excitation cross-section

The distorted wave Born approximation (DWBA)
has been employed successfully for the theoretical de-
scription of low-energy scattering reactions [23, 24].
The DWBA differential cross-section for the excita-
tion of a nucleus by inelastic scattering by alpha ()

particle, a+N — o+ N¥*, is given by
chWBA

dQ

Ky

2
(&)
2nh? ) K

where k; and k, are the initial and final linear mo-
menta of the a-nucleus relative motion, respectively,
and p is the reduced mass. The transition matrix ele-

ment T, is given by

|2

ITal". (25)

Ti= <X§_)\Pf [V|Xi+)lPi> ’ (26)
where V is the a-nucleon interaction, % and ! are
the incoming and outgoing distorted wave functions of
the relative a-nucleus motion, respectively, ¥. and

WV, are the initial and final states of the nucleus,

respectively. To calculate the transition matrix element
T, EQ. (26), one can adopt the following approach.

First, integrate over the coordinates of the nucleons (in
W, and ¥, ) to obtain the transition potential
U (r) ~ [ WiV ¥, drdr,...dr, (27)

as a function of the relative coordinate r between the |

83U, (r,E) = [ dr'sp, (1", E){V (17 =r"l:po(r)) +po(r)

where &p, (r',E) is the transition density for the
excited state. We point out that within the “macro-
scopic” approach, commonly employed in the exper-
imental analysis of scattering data, one adopts semi-
classical collective model transition densities, p,, ,
[21, 23, 24, 26, 27] with radial forms that are inde-
pendent of the excitation energy and are derived from
the ground state density using a collective model.
Another approach for evaluating the transition ma-
trix element T, , usually employed in theoretical cal-
culations, is to first integrate over the relative a-nu-
cleus coordinates to obtain the scattering operator,

ISSN 1818-331X SAAJEPHA ®I3UKA TA EHEPTETHKA 2020 T. 21 Ne 2

projectile and the nucleus and then calculate the
cross-section using

2

d_c_( p
dQ \ 2nn’

2
j%\(xi‘)ISle?)) . (29

The cross-section is calculated using a certain DWBA
code [25] with the transition potential 8U (r) and the
optical potential U(r) as input.

The folding model (FM) approach [23] to deter-
mine the optical potential U (r) and transition potential

dU(r), as convolutions between the projectile-nu-
cleon interaction V(|r—r'|,p,(r")) and the ground

state and transition densities, respectively, is com-
monly used in theoretical descriptions of o-particle
scattering [24]. The optical potential U (r) is given by

U(r) = [drv (Ir=r"],po(r) po(r)- (29)

Here, p,(r’) isthe ground state HF density of a spher-
ical target nucleus and the a-nucleon interaction
V(r—r'|,p,(r)) is assumed to have the parame-
terized form

—r-r

V(= Lpo(r) =V, (L Byp2(r))e © -

—r—r1

— W, (1+Bypg(r)Je ™ .

(30)

Note that V(|r—r'|,p,(r")) is complex and density-
dependent [24]. The parameters V,, B,, o,, W,,
By, o INEQ. (30) are usually determined by a fit to
the elastic scattering data. The transition potential,
38U, (r,E), foran excited state with the multipolarity

L and excitation energy E , is obtained from

ov(r-r I,po(r'))} (31)
Opo(r') ’
| O~ [xvxiVdr, (32)

and then calculate the matrix element (¥,|O|¥,)

within a theoretical model for ¥, and ¥,, using the
HF ground state density in (29) and the HF-based
RPA transition density in (31). Note that it is quite
common in theoretical calculations to adopt for the
operator O in (32) the operators of Egs. (16) and (17),
for determining the strength function S(E). There-
fore, for a proper comparison between experimental
and theoretical results for S(E) , one should adopt the
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“microscopic” FM approach in the DWBA calcula-
tions of o(E), using HF ground state density in (29)

and the HF-based RPA transition density in (31).

2.4. Equation of state of symmetric
and asymmetric nuclear matter

In the vicinity of the saturation density p, of sym-
metric NM, the EOS can be approximated by

0

Eo[p1=E0[p0]+%KNM(p;p°], (33)

where E,[p] is the binding energy per nucleon and
K s the incompressibility coefficient which is
proportional to the curvature of the EOS,
0°E,

2

K = 9p¢ . The EOS of asymmetric NM
Po

(ANM) can be approximated by

Elp,.p,]= Esl[p]+ Esym[p]("”%“j . (34)

where p , is the proton density, p, is the neutron den-
sity and Eg, [p] is the symmetry energy at matter
density p, given by

2
1 (p-p 1 pP—p
E =J+ZL| 0 |+ =K ol (35
sym[p] 3 ( po J 18 sym( po ( )

where J =E_ [p,] is the symmetry energy at satura-

) ) OEg,,
tion  density  p,, L=3p,—* , and
p
Po
2 82 Es m
Kym = 9P —>— Therefore, to extend our
op
Po

knowledge of the EOS, accurate values of K,,,,
EymlPo] and its first and second derivatives are

needed in the vicinity of the symmetric NM saturation
density. Here we consider the sensitivity of the cen-
troid energies of the isoscalar and isovector giant res-
onances to bulk properties of NM, suchas K, E,
and the effective mass m*/m.

3. Results

3.1. Determination of the parameters
of the Skyrme interaction

Many Skyrme type effective NN interactions of
different forms were obtained during the last five de-

cades by fitting the HF results to selected sets of ex-
perimental data [9, 10]. We emphasize that here we
consider the specific standard form of Eq. (1) for the
Skyrme type interaction. We note that for a fixed set
of values for the bulk properties of NM the corre-
sponding values for the Skyrme parameters can be de-
termined by using the relations between the properties
of nuclear matter and the Skyrme parameters [9, 17].
However, this is not possible due to the large uncer-
tainties in the experimental values of the bulk proper-
ties of NM. It is common to determine the parameters
of the Skyrme interaction by fitting HF results to ex-
perimental data on properties of nuclei, such as bind-
ing energies and charge radii, and include the experi-
mental data on bulk properties of NM as constraints.
For example, in the case of the modern KDEOv1
Skyrme interaction [9] the parameters were deter-
mined by a fit of the HF results to experimental data
for binding energies and charge radii of an extended
set of ground states of nuclei, which include neutron-
rich as well as proton-rich nuclei. The experimental
data for the spin-orbit (S-O) splitting of the 2p neu-
trons and protons “bare” single-particle orbits in the
*Ni nucleus and the rms radii for the 1d,,,

r,(vld,,), and 1f,,, r(v1f,,), neutron orbits in

70 and **Ca nuclei, respectively, were also included
in the fit. We note, in particular, that the experimental
data for the isoscalar giant monopole resonance
(ISGMR) constraint energies E, for the %Zr, °Sn,

144Sm, and 2%Pb nuclei and the critical density p,,,

determined by imposing the Landau stability [28]
conditions for nuclear matter, up to the value of 2.5p,

with an error of 0.5p,, where p, is the saturation den-

sity, were also included in the fit. Moreover, the values
of the Skyrme parameters were constrained by the ex-
perimental data on the bulk properties of NM and by
requiring that: (i) a positive slope for the symmetry en-
ergy density for p < 3p,; (ii) value of k¥ =0.1-0.5 for
the enhancement factor of the EWSR for the IVGDR
and (iii) value of G/ >0 for the Landau particle-hole

interaction parameter at p = p, . The simulated anneal-

ing approach was employed in the minimization pro-
cedure to determine the Skyrme parameters with the
best fit to the experimental data (see Ref. [9]).

It is very important to note that in determining the
parameters of the Skyrme interaction, various approx-
imations were made in the literature concerning: (i)
the values of the neutron and proton masses; (ii) the
spin-density terms may be ignored; (iii) the Coulomb
exchange term is approximated or ignored; (iv) the
center of mass correction to the energy is approxi-
mated; (v) the contribution of charge dependence
terms in the NN interaction is usually neglected.
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These approximations should be taken into account
for a proper application of the specific interaction. In
Table 1 we present three parameter sets: for the SkM*
force [29], which gives the realistic values of the nu-
clear matter incompressibility and the deformation
energies of heavy nuclei, for the more recent Sly4 in-
teraction [17] and the most recent KDEOvV1 interac-
tion [9]. We point out that knowledge of the surface
energy of finite nuclei provides an additional relation
involving Skyrme parameters t, and t,. We note that

in the mean-field, adjusted to reproduce the experi-
mental data of charge root-mean-square (RMS) radii,
the calculated Coulomb displacement energies of an-
alog states are smaller than the experimental data by
about 7 % [30]. It was shown [30 — 33] that this dis-
crepancy is due to the neglect of the contributions of
charge dependence in the nuclear force and the effect
of long-range correlations. A good approximation for
accounting for these contributions and also obtaining
a good fit for binding energies of proton-rich nuclei is
to eliminate the contribution of the exchange coulomb
term from the Hamiltonian, i.e. taking C,, =0, as was

done in determining the parameters of the KDEOv1
Skyrme interaction [9], see Table 1. We note that the
Skyrme interaction KDEOv1 also reproduces the ex-
perimental data of neutron stars and fission barriers
[16], which were not included in the fit for determin-
ing the parameters of KDEOv1.

Table 1. Parameters of the Skyrme interactions SKM*
[29], Sly4 [17], and KDEOv1 [9] and some associated
properties of symmetric nuclear matter. The values of
Cex = 0 or 1 indicate whether the Coulomb exchange
term is omitted or included in the Hamiltonian

Force SkM* Sly4 KDEQv1
t,, MeV fm3 —2645.0 | —2488.91 | —2553.0843
t,, MeV fm® 410.0 | 486.82 | 411.6963
t,, MeV fm® ~135.0 | -546.39 | —419.8712
t,, MeV fm3(*® | 155050 | 13777.0 | 14603.6069
X, 0.09 0.834 0.6483
X, 0.0 -0.344 -0.3472
X, 0.0 -1.0 -0.9268
X, 0.0 1.354 0.9475
o 1/6 1/6 0.1673
W, , MeV fm? 130.0 123.0 124.4100
C,, 1 1 0
E;[po]. MeV -15.78 | -15.97 ~16.23
K 216.7 | 229.90 227.54
P, fm= 0.16 0.16 0.165
m*/m 0.79 0.70 0.74
J, MeV 30.03 32.00 3458
L, MeV 45.78 45.96 54.69
K 0.53 0.25 0.23
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3.2. Consequences of violations of self-consistency
in RPA calculation

Accurate experimental data on the strength distri-
butions, energies, and widths of various giant reso-
nances exist for a wide range of nuclei [6, 34]. At pre-
sent, the results of our fully self-consistent and HF-
based RPA calculations for centroid energies of
various giant resonances are accurate within 0.1 -
0.2 MeV, comparable to the current experimental
accuracy [34]. In the following, we will describe and
present results of the investigations leading to the
resolutions of the longstanding discrepancy in the
value of K,,,, as deduced using Skyrme interactions

(Kyw =210 MeV) and  Gogny interaction
(Kyw =230 MeV).
Violation of self-consistency in the HF-based

RPA calculations of properties of giant resonances,
such as the response functions S(E) and centroid en-

ergies E..,, are mainly due to the neglect of some

components of the NN interaction, such as the Cou-
lomb and spin-orbit interactions, which were included
in the HF calculations but not in the RPA calculations
and to the limitation in the configuration space (i.e.
numerical accuracy). We point out that the fulfillment
of the EWSR of the giant resonances and obtaining
the L=1 T =0 spurious state, associated with the

center of mass motion, at zero energy are necessary
conditions for self-consistency in the HF-based RPA
calculations, but not sufficient. The effects of viola-
tions of self-consistency in HF-based RPA calcula-
tions of S(E), E., and the transition densities p,

of various giant resonances were investigated in detail
[19 21, 35]. Violations of self-consistency may have
significant effects on the S(E), E., and p, of the

ISGMR and on the ISGDR [19, 20].
The HF-based RPA results of the strength functions
S(E) of the ISGMR in 2®Pb and *Zr, obtained using

the KDEO Skyrme interaction [9], are shown in Fig. 1.
The full line (SC) corresponds to the fully self-con-
sistent calculations. The dashed line and the open circle
line represent the results for S(E) obtained by neglec-
ting the spin-orbit and Coulomb particle-hole interac-
tions in the RPA calculations, respectively. The results
of similar calculations for isoscalar giant resonances of
multipolarity L =0-3, using the SGII Skyrme inte-
raction [36], are shown in Fig. 2 for 1%Sn. We point out
the violations of self-consistency result in a reduction
of about 1 MeV (of about a 7 %) in the ISGMR energy
of 2%Ph. This shift leads to about a 14 % decrease in
the value of the nuclear matter incompressibility coef-
ficient K,,, which corresponds to a shift of 30 MeV

in K, Therefore, we conclude that when compared
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with experimental data, the same value of K, is

obtained for different non-relativistic interactions,
such as Skyrme and Gogny interactions, if the HF-
based RPA calculations of the centroid energy of the
ISGMR are fully self-consistent. As shown in Fig. 2,
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Fig. 1. Strength functions of isoscalar giant monopole for
208Phy and %Zr nuclei calculated using the KDEO interac-
tion [9]. SC (full line) corresponds to the fully self-con-
sistent calculation where LS (dashed line) and CO (open
circle) represent the calculations without the particle-hole
spin-orbit and Coulomb interactions in the RPA calcula-
tions, respectively.

3.3. Nuclear matter incompressibility coefficient
from the ISGDR

The isoscalar giant dipole resonance (ISGDR) is a
compression mode and provides an independent
source of information on the NM incompressibility
coefficient K,,,. Early experimental investigations
[37] resulted in a value of about 20 MeV for the E,
of the ISGDR in 2%Pb, which is smaller by about
4 MeV than the prediction of fully self-consistent HF-
based RPA results obtained with interactions adjusted
to reproduce experimental values of the E.. for IS-
GMR in ?%pb. Therefore, the early experimental data
onthe E.., of ISGDR leads to a significantly smaller
value of K,, (~170 MeV) than that obtained from
the ISGMR, which raises some doubts concerning the
unambiguous extraction of K,,, from energies of
compression modes of nuclei. To investigate this dis-
crepancy, we have therefore carried out microscopic
calculation of the excitation cross-section of the IS-
GDR, within the FM DWBA using the HF ground
state matter density and the RPA transition density,
see section 2.3.
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the effects of violations of self-consistency on E., of

isoscalar giant resonances of multipolarity L=1-3
are relatively small. A similar, relatively small shift in
the values of the E.., of isovector giant resonances

was obtained, see Ref. [19].
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Fig. 2. HF-RPA results for the isoscalar strength functions
of 19°Sn for multipolarities L=0-3 are displayed. SC
(full line) corresponds to fully self-consistent calculations
where LS (dashed line) and CO (open-circle) represent the
calculations without the particle-hole spin-orbit and Cou-
lomb interactions in the RPA calculations, respectively.
The Skyrme interaction SGII [36] was used (Taken from
Ref. [19]).

In Fig. 3 we present the results [21] of microscopic
calculations of the excitation cross-section o(E) of

the ISGDR in 1°Sn by 240 MeV a-particle scattering,
carried out within the microscopic HF-based RPA
and the FM-DWBA theory [23, 24] using the SL1
Skyrme interaction [38]. The solid line in the upper
panel shows the HF-based RPA results for the frac-
tion of the EWSR, ES(E)/EWSR . The middle

panel of the figure shows the double differential 1S-
GDR cross-sections at the angle of 1% maximum
found using the transition potential for the ISGDR
obtained from the HF-based RPA transition density.
The lowest panel shows the results of the second
panel (solid line) and from the collective model tran-
sition density p.,, [39] (dashed line) both normalized
to 100 % of the EWSR of the ISGDR. Now, consid-
ering the solid line values of the cross-section shown
in the middle panel as the “experimental data” and di-
viding it by the cross-section values shown by the
dashed line (semi-classical results) in the lower panel,
we obtain the values of ES(E)/EWSR shown by

the dashed line in the upper panel, which is the result
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obtained in the experimental analysis of cross-section
data using the semi-classical form for the energy-
independent transition density.
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Fig. 3. Reconstruction of the ISGDR EWSR in 6Sn
from the inelastic a-particle cross-sections. The middle
panel: 1% maximum double differential cross-section
obtained from the RPA transition density p,. The lower
panel: maximum cross-section obtained with the collec-
tive model transition density p,,, (dashed line) and the
HF-RPA transition density p, (solid line) normalized to

100 % of the EWSR. Upper panel: the solid (dashed)
line is the ratio between the middle panel curve and the
solid (dashed) curve of the lower panel (Taken from
Ref. [21]).

It is seen from the upper panel that using of the
collective model transition densities p_,, in analyzing

the experimental cross sections increases the EWSR
by about 15 %. However, the shifts in the centroid en-
ergies are small (a few percents), similar in magnitude
to the current experimental uncertainties. It is
important to note [21] that the maximum cross-
section for the excitation of the ISGDR shown in the
middle panel decreases strongly at high excitation en-
ergy and drops below the experimental sensitivity.
This missing experimental strength leads to a reduc-
tion of about 3.0 MeV in the centroid energy of the
ISGDR. Taking into account this missing strength
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significantly reduces the discrepancy between theory
and experiment. This prediction was confirmed in an
improved experiment [40]. Therefore, we conclude
that the value of K,, deduced from the ISGDR com-
pression mode is in good agreement with that de-
duced from the ISGMR compression mode.

3.4. Incompressibility coefficient of NM
in relativistic and nonrelativistic models

Some relativistic RPA models yielded values of
Kuw, deduced from the ISGMR, which are signifi-
cantly larger than those obtained from the non-rela-
tivistic Skyrme HF-based RPA calculations. For
example, the NL3 parameterization [41] is associated
with K,,, =272 MeV, as compared to the value of
Kum =240 MeV deduced from the non-relativistic
model. We have investigated this model’s depend-
ence in Ref. [42] by generating parameter sets for
Skyrme interactions by the least square fitting proce-
dure using the same experimental data for the bulk
properties of nuclei considered in Ref. [41] for deter-
mining the NL3 parameterization of the effective La-
grangian used in the relativistic mean-field (RMF)
models. It is important to point out that the symmetry
energy coefficient J and charge rms radius of 2°Pb
were constrained to be very close to 37.4 MeV and
5.50 fm, respectively, as obtained with the NL3 inter-
action and K,,, was fixed in the vicinity of the NL3
value K, =271.76 MeV.

Table 2 presents the results for E., of the
ISGMR for several nuclei, obtained within fully self-
consistent HF-based RPA (see Ref. [35]), using the
KDEO [9], SK255 [42], and SGII [36] Skyrme inte-
ractions, and the results obtained within the relativ-
istic mean-field (RMF)-based RPA using the NL3 in-
teraction [41]. We also compare with the experi-
mental data of Refs. [40, 43] calculated using the ex-
perimental excitation energy range (o, —®,). We
point out that the results of Table 2 demonstrate that
Kuu Can be deduced in a model-independent way us-
ing relativistic and non-relativistic RPA calculations.
Therefore, we conclude that K,,, =240+20 MeV.
The uncertainty of 20 MeV is mainly due to the un-
certainty in E_,_[p] and the possible effects of corre-

sym
lations beyond mean-field-based RPA. Note the dif-

ference in the value of J associated with SGII and
the SK255 Skyrme interactions, and with the NL3 in-
teraction shown in Table 2.
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Table 2. Results of fully self-consistent RPA calculations for the centroid energies of the ISGMR
for interactions with various values of Knm and J coefficients (in MeV)

Nucleus o, —o, Experiment NL3 SK255 SGlI KDEO
07y 0-60 18.7 18.90 17.89 18.03
10-35 17.81+0.30 18.85 17.87 17.98
1165 0-60 17.1 17.31 16.36 16.58
10-35 15.85+0.20 17.33 16.38 16.61
1435m 0-60 16.1 16.21 15.26 15.46
10-35 15.40 +0.40 16.19 15.22 15.44
208pp 0-60 14.2 14.34 13.57 13.79
10-35 13.96 +0.20 14.38 13.58 13.84
Ky » MeV 272 255 215 229
J, MeV 374 37.4 26.8 33.0

3.5. The sensitivity of energies of giant resonances
to properties of nuclear matter

The sensitivities of the strength function distribu-
tions, S(E), and centroid energies, E.g,, of isosca-

lar and isovector giant resonances of nuclei to the val-
ues of bulk properties of symmetric (N =2Z) NM:
such as the binding energy per nucleon E,[p,], the
saturation density p,, the incompressibility coeffi-
&K,

cient Ky =9p5 —

, the symmetry energy coef-
Po
[p,], and its first and second
L _ 3 aEsym
=90 3p

ficients at p,, J =E

sym

derivatives and

Po

0°E
K, =9p3 —m

sym 302 the effective
p

, respectively,
Po
mass m*/m, and the enhancement coefficient « of
the EWSR of the IVGDR, have been investigated
extensively very recently [8]. In this investigation:

1. The isoscalar and isovector giant resonances of
multipolarities L=0 to 3 were considered for the
wide range of closed-shell nuclei “***Ca, ®®Ni, *zr,
1185, 1*45m, and 2°®Pb. The occupation number ap-
proximation for the single-particle orbits for the open-
shell nucleus ***Sm was adopted to ensure a spherical
nucleus.

2. Fully self-consistent HF-based RPA calcula-
tions of the centroid energies were carried out using
33 Skyrme effective NN interactions of the standard
form, Eq. (1), commonly adopted in the literature.
The interactions used in this work are: SGII [36],
KDEO [9], KDEOv1 [9], SKM*[29], SK255 [42],
Ski3 [44], Skl4[44], SkI5[44], SV-bas [45],
SV-min [45], SV-sym32 [45], SV-m56-O [46],
SV-m64-0 [46], Sly4[17], Sly5[17], Sly6 [17],
SkMP [47], SkO[48], SkO' [48], LNS [49],
MSLO [50], NRAPR [51], SQMC650 [52],

SQMC700 [52], SkT1[53], SkT2[53], SkT3[53],
SkT8 [53], SkT9[53], SkT1*[53], SkT3*[53],
Skxs20 [54] and Zo [55]. We note that wide ranges of
values for the bulk NM properties are covered by the
selected Skyrme interactions [8].

3. The Skyrme interactions were implemented in
these calculations as they were designed. For exam-
ple, by using the values of the masses of the proton
and the neutron and the approximation for the Cou-
lomb energy that were adopted in determining the pa-
rameters of the interactions. Self-consistency was en-
sured by including in the RPA calculations all the
components of the interaction used in the HF calcula-
tion and carrying out highly accurate numerical cal-
culations.

4. The sensitivity of E.., to a NM property was
deduced by calculating the corresponding Pearson
linear correlation coefficient C, given, for quantities

xandy, by

> (% =X)(Y; - V)
\/ZL(Xi ~X)’ \/Zi"zl(yi ~y)

where X and Y are the averages of x and y and the
sum runs over all values. The different degrees of cor-
relation can be classified as: strong (] C |>0.80), me-
dium (JC|=0.61-0.80), weak (|C|=0.35—0.60)
and no correlation (|C|<0.35).

In Table 3 the calculated Pearson linear correla-
tion coefficients between different sets of NM pro-
perties are shown. We point out the weak correlation

between K,,, and m*/m, the medium correlation

C=

. (36)

between m*/m and the enhancement coefficient for
the EWSR of the IVGDR, «, and the varying degrees

of correlation between the symmetry energy coeffi-
cients J, L and K.
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Table 3. Calculated Pearson linear correlation coefficients, C, for NM properties.
The parameters of all 33 Skyrme effective NN interactions were used to calculate C (see Ref. [8])

Km J L Keym m*/m x W, (%, =1)
K 1.00 0.03 0.30 0.43 -0.37 -0.02 0.03
J 0.03 1.00 0.72 0.49 0.07 —0.24 -0.25
L 0.30 0.72 1.00 0.91 -0.15 -0.13 -0.08
Keym 0.43 0.49 0.91 1.00 -0.41 -0.08 0.05
m*/m -0.37 0.07 -0.15 -0.41 1.00 -0.63 -0.19
" -0.02 -0.24 -0.13 -0.08 -0.63 1.00 -0.03
W, (x, =1) 0.03 -0.25 -0.08 0.05 -0.19 -0.03 1.00

Table 4 presents the Pearson linear correlation
coefficients between each nuclear bulk property of
nuclear matter at saturation density and centroid
energy of each giant resonance: the isoscalar giant
monopole resonance (ISGMR), isoscalar giant dipole
resonance (ISGDR), isoscalar giant quadrupole reso-
nance (ISGQR), isoscalar giant octupole resonance
(ISGOR), isovector giant monopole resonance
(IVGMR), isovector giant dipole resonance
(IVGDR), isovector giant quadrupole resonance
(IVGQR) and isovector giant octupole resonance

(IVGOR). Note that it is seen from Table 4 that, in
particular, there exist strong correlations between
E.ey and the incompressibility coefficient K, for

the ISGMR, between E.., and the effective mass
m*/m for the ISGQR and between E.., and the en-

hancement coefficient « for the IVGDR EWSR and,
surprisingly, very weak correlations between E_g,

and the symmetry energy J or its first and second
derivative, for the IVGDR.

Table 4. Pearson linear correlation coefficients between the centroid energy
of each giant resonance and each nuclear matter property at saturation density (see Ref. [8])

KNM J Ksym m*/m K
ISGMR 0.87 -0.10 0.25 0.45 -0.51 0.13
ISGDR 0.52 -0.10 0.13 0.36 -0.88 0.55
ISGQR 0.41 -0.09 0.15 0.41 -0.93 0.54
ISGOR 0.42 -0.10 0.15 0.43 —-0.96 0.56
IVGMR 0.23 —0.26 -0.12 0.00 —-0.70 0.86
IVGDR 0.05 -0.37 —0.42 -0.30 —-0.60 0.84
IVGQR 0.18 —-0.35 -0.29 -0.13 -0.74 0.80
IVGOR 0.25 -0.32 -0.19 0.02 -0.83 0.81

Fig. 4 shows the E_., of the ISGMR as a function
Ky Of the corresponding Skyrme interaction used in

the calculation. Each nucleus is plotted separately, and
the appropriate experimental band is contained by the
dashed lines. Overall we see the well-known strong
correlation between the E_, and K, [7, 56], with a

Pearson linear correlation coefficient C ~ 0.87 for all
nuclei. It is interesting to note that we find a very weak
correlation between K,,, and the E.. of the other

compression modes, the ISGDR or the IVGMR (see
Table 1). Fig. 5 shows the E_., of the ISGQR as a

function of the effective mass m* / m. We find a strong
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correlation between E_, and m*/m (Pearson corre-
lation coefficient C =-0.93). Fig. 6 shows the E..

of the IVGDR as a function of «. We find a strong
correlation between the values of the E.,, and «

(Pearson correlation coefficient C =0.84). As shown
in Table 4 we find a very weak correlation between the
values of the E.,, of IVGDR and J (C=-0.37),
and similarly for its first derivative L (C =-0.42)

and second derivative K__ (C =-0.30). See Ref. [8]

sym

for other giant resonances.
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Fig. 4. Calculated centroid energies E., in MeV (full
circle) of the ISGMR for the different 33 Skyrme inter-
actions (see section 3.5), as a function of the incom-
pressibility coefficient K,,,. Each nucleus has its panel

and the experimental uncertainties are contained by the
dashed lines (Taken from Ref. [8]).
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4. Summary and conclusions

We first described our knowledge of properties of
isoscalar and isovector giant resonances of multipo-
larity L=0-3, such as the strength functions S(E)

and centroid energies E.., and their sensitivities to

bulk properties of NM. We then reviewed the current
status of determining the parameters of modern EDF,
associated with the standard form of the Skyrme type
effective NN interaction, having ten (10) parameters.
In section 2 we have presented a summary of the for-
malism of carrying out HF calculations of properties
of ground states of nuclei, the formalism of carrying

out HF-based RPA calculations of S(E) and E.g,

and the FM) DWBA method for calculating the exci-
tation cross-section of giant resonance by inelastic
scattering with a projectile such as the o particle.
The results of our calculations were presented and
discussed in section 3. We first describe the common
approach employed in determining the parameters of
the Skyrme interaction by a fit of HF results of pro-
perties of nuclei to experimental data, including con-
straints on NM properties. For example, the recent
KDEOv1 was determined by a fit to binding energies
and charge root-mean-square (rms) radii of nuclei
ranging from the normal to exotic (proton- or neu-

tron-rich) ones, and rms radii for 1d,, and 1f,,
valence neutron orbits in the YO and *Ca nuclei,
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respectively. We have included in the fit the experi-
mental data on the constraint energies of the ISGMR
and on the critical density p, >2p,, determined by
the Landau parameters stability condition. Also in-
cluded in the fit the constraints: (i) the slope of the
symmetry energy must be positive for densities up to
3p,; (ii) the enhancement factor « , of the EWSR for
the IVGDR, should lie in the range of 0.1 to 0.5; and
(iii) the Landau parameter G, of the particle-hole in-
teraction, crucial for the spin properties of finite nu-
clei and nuclear matter, should be positive at p =p,.
We note that out of 240 Skyrme interactions, investi-
gated by other researchers for the predictive power of
these interactions, only the KDEOv1 also reproduce
data on neutron stars and fission barriers that were not
included in the fit. For comparison, we presented in
Table 1 the parameters and the associated bulk pro-
perties of NM of the popular Skyrme interactions,
SkM*, SLy4 and KDEOQOvL1.

We also presented results of HF-based RPA cal-
culations of S(E) and E.g,. We first considered
problems of self-consistency in the calculations of
S(E) and Egy. the result of microscopic calculation
of excitation cross-section of giant resonances needed
for reliable determination of NM properties and
demonstrated the model independence in deducing

the incompressibility coefficient K,,, from the

ISGMR E,, obtained using the HF-based RPA in
non-relativistic or relativistic models approaches. We
then presented results of E.., and studied the sensi-

tivities of Eg to bulk properties of NM by employ-
ing 33 Skyrme type interactions, commonly used in
the literature. We have demonstrated:

(i) the important effects of violation of self-con-
sistencies (SC) in HF-based RPA calculations of
strength functions of giant resonances of multipolarities
L =0-3 and pointed out that due to a violation of SC
the shift in the centroid energy of the ISGMR can be
larger than 1 MeV (five times the experimental uncer-
tainty), resolving the apparent dependence on the effec-
tive interactions in deducing Ky, from the ISGMR;

(if) by carrying out highly accurate microscopic
calculations of excitation cross-sections of the
ISGMR and ISGDR and pointing out the missing
strength at high excitation energy in the experimental
measurement of the alpha excitation cross-section of
the ISGDR. This was confirmed by more accurate ex-
periment, resolving the disagreement in the value of
Kyw deduced from the ISGMR or the ISGDR,;

(iii) by constructing Skyrme interactions with
values of Ky, similar to those obtained in the
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relativistic models we resolved the apparent model
dependence in deducing the value of K,, from the

Ecey of the ISGMR.

We have also presented results calculations of
Ecen , Of the isoscalar (T =0) and isovector (T =1)
giant resonances of multipolarities L=0-3 in
4048Ca, ©BNi, ©zr, 1°sn, 1*Sm, and 2Pb, within the
fully self-consistent spherical HF-based RPA theory,

using 33 different Skyrme-type effective NN interac-
tions of the standard form commonly adopted in the

literature. We reproduced the data for the E.g of the

ISGMR, ISGQR, and IVGDR for most of the nuclei
considered. For the ISGDR and ISGOR, we found
that most of the interactions are consistently higher
than the experimental values for the centroid energy.

We also studied the sensitivity of E.. to bulk prop-
erties of nuclear matter (NM), such as the effective
mass M"/m, nuclear matter incompressibility coef-
ficient K,,, enhancement coefficient k of the

EWSR for the IVGDR and the symmetry energy J
and its first L and second K, derivatives at satura-

tion density, associated with the Skyrme interactions
used in the calculations. By comparing the calculated
values of E;y to the experimental data, we deduced
constraints on the values of K,,,, m"/m,and k. We

thus summarize our findings and conclude that:
— Itis important to carry out fully self-consistent

HF-based RPA calculations of E., to deduced
model-independent values for bulk properties of NM,
in particular for the value of Ky,,.

— It is important to carry out a very sensitive
measurement of the excitation cross-section to de-
duce consistent values for bulk properties of NM
from various giant resonances, particularly, for the

Kuw from the Eg of the ISGMR and the ISGDR.
— We obtained strong, weak, and no correlations
between the calculated values of E and K, for
the compression modes of the ISGMR (C ~0.87),
ISGDR (C~0.52) and the IVGMR (C ~0.23),

respectively.
— We obtained strong correlations between the

effective mass m"/m and the calculated values of
Egy for the ISGDR (C~-0.88), ISGQR
(C~-0.93), ISGOR (C~-0.96) and IVGOR
(C~-0.83) and medium correlations for the
IVGMR (C ~-0.70), IVGDR (C ~-0.60), and
IVGQR (C ~—-0.74).

We obtained strong correlations between the
calculated values of the E.z, and the enhancement
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coefficient, K, for the EWSR of the IVGDR for all
the isovector giant resonances considered
(C=0.80-0.86).

— We found weak to no correlations between the
calculated values of E.., and the symmetry energy
coefficients J, L or K, for all the isovector reso-

nances considered, see Table 4 for details.

— Considering the results of the E of the
ISGMR, ISGQR, and IVGDR of “°“®Ca, ®Ni, *zr,
1185, 14Sm and 2®Pb we find that the interactions as-
sociated with NM properties in the following range
best  reproduce  the  experimental data:
K =210-240 MeV, m"'/m=0.7-09 and

k=0.25-0.70.

We add that the constraints on NM properties that
we obtained can be used to develop the next genera-
tion of EDF by imposing the constraints in the fits
used to determine the values of the parameters of the
Skyrme interaction. We note that although these con-
straints may depend on the specific form of the inter-
action adopted, it is known that the centroid energy of

the ISGMR is sensitive to K. Similarly, the

ISGQR is sensitive to the value of m*/m [57]
because the effective mass influences the spacing
between major nuclear shells and therefore the distri-
bution of the response function. We also point out that
when determining the best range for the effective
mass we emphasized the results of the heavier nuclei
more. Lastly, the dependence of the centroid energy

of the IVGDR on K, is expected from Eq. (22) for
the EWSR of the IVGDR, which is given by constant
times (1+x).
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Kolomietz who died in June 2018, a personal loss to
us and his family. S.S. is supported in part by the US
Department of Energy, under Grant No DE-FGO03-
93ER40773. A.L.S. is partially supported by the Fun-
damental Research program “Fundamental research
in high energy physics and nuclear physics (interna-
tional collaboration)” of the National Academy of
Sciences of Ukraine.
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. ®YHKIIOHAJI TYCTUHHA EHEPTTi TA YYTIUBICTD B
EHEPI'IM I'ITAHTCBKHUX PE3OHAHCIB 10 BJIACTUBOCTEU AAEPHOI MATEPII

3anpornoHOBaHO KOPOTKUH OTJISI TOTOYHOTO CTaHy SIEPHOTO QYHKIIIOHATY TYCTHHHU €HEpril Ta TCOPETHYHUX PE3YIlb-
TaTiB, OTPUMAHUX JUIA siAep 1 siiepHoi Martepii. OnmucaHo MeTo]| BU3HAUEHHs TapaMeTpiB QyHKIIOHANA TYCTHHU €Hepril,
OB’ 13aHOTO 3 e(pEKTHBHOIO B3aeMoIiero CkipMa, IULSIXOM MiArOHKH Ha OcHOBI Teopil Xaptpi - ®oka (HF) mo mmpoxoro
Ha0Opy JaHUX IT0 BIACTUBOCTSX OCHOBHHX CTaHIB SI/IEp 3 YpaxyBaHHSIM BiANOBIIHUX 0OMekeHb. Jlaii onrcaHo OCHOBaHe

Ha Teopii HF noBHicTIO camoy3romkene HabmKeHHs BuniaakoBux a3 (RPA) s pospaxynky cuinoBux QyHkuid S(E)

i cepenHix eHepriif (neHTpoiniB) E ., riraHTCHKUX pe30HAHCIB i GOpHIBChKE HAOIMKEHHS CIIOTBOpeHUX XBUIL (DWBA)

Ha ocHOBI Mojieni 3ropTku (FM) st o6umcienHs nepepiziB 30yKeHb TIraHTCHKUX PE30HAHCIB MPU PO3CIsSHHI 0-4acTH-
Hok. HaBezneHo Taki pesynbsrari: napamerpu Ckipma ¢yHkuioHana ryctuau eHeprii KDEOv1; Hacinku nmopymieHHs ca-

Moy3sromxeHocTi RPA Ha ocnoBi HF; po3paxynku nepepisis 30ymxenHs 3a gornomororo FM-DWBA; 3nauenns E .

130CKaJISIPHOTO Ta 130BEKTOPHOTO TIraHTCHKUX PE30HAHCIB MyJbTHIIONbHOCTI L =0—3 mi1st mmpokoro kona chepuaHux
siep 13 3actocyBaHHsIM 33 (yHKIIOHANIB TYCTHHH €Heprii Ha OCHOBI cTaHnapTHOI Gopmu B3aemoxaii Ckipma, 110 3a3BH-
Yaif BUKOPUCTOBY€ETHCS B JIiTepaTypi; UymIUBICTh E - TiraHTCHKMX PE30HAHCIB 0 OCHOBHHX BJIAaCTUBOCTEH sIepHOI
Marepii. BusHaueHo Tako)k 0OMeXEeHHs Ha Taki BIaCTHBOCTI SIIEPHOI MaTepii, IK HECTHCIMBICTD i e(peKTHBHA Maca HyK-
JIOHA, IOPIBHIOIOYM PO3PAXYHKH 3 €KCIIEPUMEHTAIbHIMU JaHUMU N0 E ., riraHTChKUX pe30HaHCIB.

Kniouosi cnosa: GyHKIIOHAT TYCTHHH €HEprii, TIraHTCHKUI pe30HaHC, sAepHa Marepis, chiioBa (YHKIS, HaOIH-
JKCHHSI BUIIaJIKOBUX (a3.
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®YHKIIMOHAJI INIOTHOCTHU SHEPTMU 1 YYBCTBUTEJbHOCTD
SHEPI'U THTAHTCKHUX PE3OHAHCOB K CBOMCTBAM SIZIEPHOII MATEPUU

[Ipencrasnen kpaTkuii 0630p TEKYIIEro craryca siIepHOro (PYHKIMOHANA TNIOTHOCTH YHEPTHU M TEOPETHUECKHUX pe-
3yJIbTaTOB, MOIYYSHHBIX JUIS SIAEP U siAepHoi MaTepuu. OnucaH METO] ONpeiesieHHs] MapaMeTpoB (pyHKIMOHAIA MII0T-
HOCTH 3HEPTHH, CBS3aHHOTO ¢ 3(QQEKTUBHBIM B3anMojeiicTBieM CKHpMa C ITOMOIIbIO TOATOHKH Ha OCHOBE TEOPHH
Xaptpu - ®oka (HF) k mrpokoMy HabOpy JaHHBIX IO CBOMCTBAM OCHOBHBIX COCTOSIHHIA siep, C yYETOM COOTBETCTBYIO-
muX orpaHndeHui. Jlanee omrcaHo ocHoBaHHOE Ha Teopun HF momHOCTRIO caMocoriiacoBaHHOE IPHOIIKEHNE CITydaii-

HbIX (ha3 (RPA) s pacuera cunoBblx GyHkuui S(E) u cpeaHux 3Heprui (LeHTpouaoB) E ., I'MraHTCKHX pe30HaHCOB

n 6opHOBCKOE MpHOIIKeHne NckaxeHHbIX BoiaH (DWBA) na ocHoBe Monenu cBeptku (FM) aist pacdera ceueHuid BO3-
Oy’KIIeHUS TUTAHTCKUX PE30HAHCOB IIPH PACCESIHUM 0-4acTull. [IprBeIeHbI cileIy oIune pe3yabTaThl: napamerpsl Ckupma
¢yakanonana mwiotHoctr Heprun KDEOV1; mocnexcTeus Hapymmenus camocoritacoBanaoctd RPA Ha ocHoBe HF; pac-

4eThl ceyeHU Bo30yxaeHus ¢ nomoipo FM-DWBA; 3nauenns E . H30CKaIApHOro U H30BEKTOPHOI'O MMTAHTCKHX

PE30HAHCOB ¢ MyJNbTHNONBHOCTEI0 L =0-3 m1s mmpokoro Habopa cdeprueckux sjep, npuMeHss 33 ¢GyHKIHMOHaNa
IUIOTHOCTH DHEPIUH CTaHAapTHOH (opmbl cmii CkupMa, KOTOpas 0OBIYHO HMCIIONB3YETCS B JIUTEPAType; YyBCTBUTEIb-
HOCTh E . THIaHTCKHX Pe30HAHCOB K M3MEHEHHSIM OCHOBHBIX CBOMCTB siIepHOH Marepun. OmpeeneHbl TakxkKe orpa-
HUYCHUS Ha TaKHe CBOMCTBA SIIEPHOM MaTepuH, Kak HEC)KUMAeMOCThb M (G (QeKTHBHAs Macca HYKJIOHA, ITyTeM CPaBHCHUS
pacueToB ¢ HKCHEPUMEHTATEHBIME JAaHHBIMH 10 E ., THTaHTCKUX PEe30HAHCOB.

Knrwouesvie crosa: QyHKIMOHAN IUIOTHOCTH DHEPTUH, THTAHTCKUI pe30HaHC, sIepHas MaTepus, CHIoBas (yHKIHs,
MIPHOIKEHAE CITyYaifHbIX (a3.
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