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INFLUENCE OF SURFACE EFFECTS ON NEUTRON SKIN IN ATOMIC NUCLEI 
 

The influence of the diffuse surface layer of a finite nucleus on the mean square radii and their isotopic shift is inves-

tigated. We present the calculations within the Gibbs - Tolman approach using the experimental values of the nucleon 

separation energies. Results are compared with that obtained by means of a direct variational method based on Fermi-like 

trial functions. 
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1. Introduction 
 

The finite nucleus possesses the surface diffuse 

layer due to the quantum penetration of particles into 

the classically forbidden region. As a result, there is 

ambiguity in the determination of the nuclear size [1]. 

Information on the size of atomic nuclei and average 

characteristics of radial nucleon distributions can be 

obtained from the values of mean square radii of   

nuclei [2]. In the analysis of experimental data, the 

two-parameter Fermi function is often used for the 

spatial distribution of nucleons,  
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where qR  is the half-density radius and qa  is the 

diffuseness parameter of the distribution. Here, 

q n=  is for neutron and q p=  for proton distribu-

tion. For a two-component system, two different pat-

terns may arise [3] depending on the parameter values 

qR  and qa . For the same values of the diffuseness, 

n pa a= , but for different values of radii, n pR R , 

one considers neutron skin. In the opposite case of the 

same values of the radii, n pR R= , and for different 

values of the diffuseness parameter, n pa a , there is 

a neutron halo. Studies show the mixture of two men-

tioned patterns with approximately equal contribu-

tions [4].  

In this paper, the effect of the diffuse surface layer 

of a nucleus on the mean square radii is considered 

making the comparison between the results of two 

models. First, we adopt the spatial distribution of  

nucleons having a sharp boundary at the equimolar 

radius. Within the Gibbs - Tolman (GT) approach  

[5 - 8] the values of the equimolar radius and the bulk  

nucleon density are obtained using the experimental 

data on nucleon separation energies. Second, we con-

sider the diffuse spatial distribution of nucleons in a 

nucleus. We apply the direct variational method 

based on the specific Fermi-like trial functions [4, 9, 

10] and the bulk nucleon density is normalized to that 

obtained using the GT approach. The comparison of 

the two above mentioned considerations allow us to 

allocate the effects of the surface layer on rms radii 

and their isotopic shift. Sec. 2 gives the basics of the 

Gibbs - Tolman approach and direct variational 

method. Results and discussion are presented in 

Sec. 3, conclusions are summarized in Sec. 4.  
 

2. The model 
 

2.1. The Gibbs - Tolman approach 
 

Following the Gibbs - Tolman approach, we   
consider the spatial distribution of nucleons in the 
spherical nucleus having a sharp boundary located 
within the surface region. The dividing spherical sur-

face of the radius R  separates the nucleus into bulk 
and surface parts with the corresponding volume 

34 3V R=    and surface area 
24S R=  . The total 

energy E  of the nucleus is also divided into the  

volume, ,VE  and, the surface, ,SE  parts, respec-

tively. Namely,  
 

 V S CE E E E= + +   (2) 
 

Here the Coulomb energy CE  is fixed and does 

not depend on the dividing radius R . The volume  

energy VE  is considered as the energy of homogene-

ous nuclear matter VE E=  contained in the  vol-

ume .V  

We consider the two-component nuclear matter 
with the neutron-proton asymmetry parameter       
X = (N – Z)/A where N  and Z  are,  respeсtively 
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the neutron and proton numbers, A N Z= +  is the 

mass number. The neutron, ,n  and proton, ,p  

chemical potentials are defined as  
 

 V V
n p

Z N
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 
. (3) 

 

By the assumption of the GT approach, the nuclear 

matter inside a certain volume is taken to be in a state 

having the same values of chemical potentials as 

those of the real nucleus (see [9])  
 

 ({ })q q V q q Cs   = − − , (4) 

 

where qs  is the single-nucleon separation energy, 

q V  is the bulk nuclear matter density of the step   

r -distribution 
 

 ,( ) ( )q q V s qr R r =   −   (5) 

 

where ,s qR  are the partial (neutron and/or proton)   

radii. The Coulomb contribution q C  to the chemical 

potential q qs = −  of the nucleus is subtracted in 

Eq. (4) since the resulting value q  of Eq. (3) corre-

sponds to uncharged nuclear matter. The value of Cou-

lomb contribution in (4) is determined by  
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Below we will approximate the Coulomb energy 

( )CE X  by the smooth function 
 

 2( ) ( )(1 )C CE X e A X A= − , (7) 
 

where 
2 3 1 3( ) 0 207 0 174Ce A A A =  −   

 

is the Coulomb energy parameter estimated from the 

fit to the experimental data, see [11].  

Considering the asymmetric nuclear matter with 

the asymmetry parameter 1X  , the bulk energy 

per particle can be used as [9] 
 

 

2

0 2( ) ( )
V

V V V

V

E A e e
− 

   +   
 

, (8) 

where 
 

 
2

2 3 10 3
0

3
( )

2 8 16
V V V V

t t
e

m

 + =  +  +  +  

 

   5 3

1 2 23 (5 4 )
16

Vt t x 
+ + +   (9) 

and 
 

2
2 3 10 3

2 0 3

5
( ) (1 2 ) (1 2 )

9 2 8 48
V V V V

t t
e x x

m

 + =  − +  − +  +  

 

 ( ) 5 3

2 2 1 1

5
(4 5 ) 3

72
Vt x t x 

+ + −  . (10) 

 

Here 
2 2 3(3 5)(3 2) , =     V n V p V  =  +  and 

V n V p V−   =  −  are the total nucleon and the neu-

tron excess bulk densities, respectively, ,it  ix  and 

  are the parameters of Skyrme force.  

The surface energy is given by [9] 
 

 ,( ) ,S S SE S− −= + +   (11) 
 

where   is the surface tension coefficient. Here 

( ) 2n p =  +  and ( ) 2n p− =  −  are, respec-

tively, the isoscalar and isovector chemical potentials, 

, ,( ) 2S n S p S =  +  is the isoscalar surface density, 

and , , ,( ) 2S n S p S− =  −  is the isovector surface 

density (see details in Ref. [9]). 

In accordance with the GT concept, the actual 

equimolar radius eR  of the droplet is determined by 

the requirement that the contribution to SE  from the 

bulk terms of Eq. (11) should be excluded. This re-

quirement can be satisfied if the following condition 

is fulfilled: 
 

 ( ), 0.
e

S S R R− − =
 +  =  (12) 

 

Eq. (12) determines the equimolar radius eR . 

As soon as the chemical potentials of a nucleus is 

known, one obtains the partial volume densities q V  

using Eqs. (3) - (10). Then, calculating the partial sur-

face densities 
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and applying the condition (see also Eq. (12)) 
 

 ,[ ] 0q S q eR = , (14) 

 

one finds the partial equimolar radii ,q eR  [9]. The 

root mean square (rms) radius for the nucleon density 

distribution ( )q r  is defined as 

 

 2 2 ( ) ( )q q q
r dd r=  r rrr . (15)  
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In particular, for the step distribution function (5), the 

corresponding rms radii are given by 
 

 2

,

3

5
q q er R= . (16) 

 

2.2. The direct variational method 
 

In order to consider the asymmetry of the diffuse 

surface of the spatial distribution of nucleons, accor-

ding to the direct variational method (see, for exam-

ple, [9, 12]), we adopt the trial function for ( )q r  as 

a power of the Fermi function, namely 
 

 0( ) ( ) q

q q qF r


 = r , (17) 

 

where 0 ,q  ,qR  qa  and q  are the variational pa-

rameters. The profile function ( )q r  should satisfy 

the conservation conditions for numbers of neutrons 

and protons  
 

 ( ) ( ) .n pd N d Z =   = r r r r  (18) 

 

The total energy of a nucleus is given by 
 

 tot kin Sk ,CE E E E= + +  (19) 
 

where kinE  is the kinetic energy, SkE  is the poten-

tial energy of the Skyrme interaction, and CE  is the 

Coulomb energy. In the case of finite nuclei, the    

kinetic energy is 
 

 
kin kin( ),E d=  r r  (20) 

 

where the kinetic energy density kin ( ) r  is given by 

the sum of the neutron and proton contributions 
 

 kin kin,n kin,p( ) ( ) ( ). =  + r r r  (21) 

We adopt the extended Thomas-Fermi approxima-

tion for the kinetic-energy density [13] 
 

( )
( )

2
2

2 3
2 5 3 2

kin,q

3 1 1
( ) 3

2 5 36 3

q

q q

qm

 
  =   + +  

 
 

r . 

(22) 
 

In our consideration, the potential energy SkE  also 

includes gradient terms due to the spin-orbit interac-

tion. We note that pair interactions are not considered 

here. 

For the ground state of the nucleus, the values of 

the variational parameters can be found by minimi-

zing the total energy of the nucleus with respect to all 

possible small changes of the variational parameters, 

provided the conditions (18) are fulfilled. Below, in 

the subsequent calculations, the values of the nucleon 

density parameters 0 q  will be normalized to the 

values obtained within the GT approach using the  

experimental data on the chemical potentials, see also 

Eq. (4), 
 

 0 q q V  =  . (23) 

 

In view of Eqs. (17) and (18) the conditions for the 

particle number conservation are written by  
 

 ( ) ( ) pn

n p

n V p V

N Z
d F r d F r



 

=  =
  r r . (24) 

 

Thus, fixing the values of 0 q  and qR  using the re-

lations (23) and (24) the number of free variational 

parameters is reduced to four, that are qa  and q . 

For the trial functions are given by (17) one can    

obtain the leptodermous expansion ( 1q qa R  ) of 

the rms radius [4]: 

 

( ) ( )
2 3

2 2 3

0 0 1 0 0 1 2

3 7 1
1 ( ) ( ) 2 ( ) 75 ( ) 204 ( ) ( ) 81 ( ) ,

5 2 6

q q q

q q q q q q q qq
q q q

a a a
r R

R R R

     
 +   −   −   +   −     +         

     

(25) 
 

where the coefficients ( )j   are the generalized 

Fermi integrals, 
 

0
( ) (1 ) ( 1) 1 (1 )j x j x

j dx x e e
  − − − 

  
  

  = + − − − + . 

(26) 
 

3. Numerical calculations 
 

Here we present the results of numerical calcula-

tions for the neutron and proton rms radii for isotopes 

of sodium, tin, and lead. The SkM

 parameterization 

[13] for the Skyrme nucleon-nucleon interaction was 

used in the calculations. Since sodium isotopes     
21-24,28-21Na have the observed prolate deformation 

[14], we will consider the effective rms radii. Fig. 1 

shows the calculation results for the effective rms  

radii of the proton spatial distributions in sodium iso-

topes versus the mass number A.  
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 Proton rms radius, fm 

 
                                                     A 

 Neutron rms radius, fm 

 
                                                    A 

Fig. 1. Dependence of the effective rms radii for proton 

spatial distributions in Na isotopes on the mass number 

.A  The black circles are the experimental data [14], the 

triangles are the calculations within the GT approach   

using one-proton separation energy; the rhombuses are the 

calculations for the diffuse distribution with one-proton 

separation energy; the squares are the calculations in the 

framework of the GT approach, half of the two-proton 

separation energy value was used; the circles are the   

calculations for diffuse distribution with half of the two-

proton separation energy value. 

Fig. 2. Dependence of the effective rms radii for neutron 

spatial distributions in sodium isotopes on the mass num-

ber .A  The black circles are the experimental data [14], 

the triangles are the calculations in the framework of the 

GT approach using one-neutron separation energy for 

neutron chemical potential; the squares are the calcula-

tions in the framework of the GT approach with half the 

two-neutron separation energy value; the rhombuses are 

the calculations for diffuse distribution with one-neutron 

separation energy; the circles are the calculations for   

diffuse distribution with half the two-neutron separation 

energy value. 
 

As the charge number is fixed, the figure actually 
depicts the dependence on the number of neutrons 

11.N A= −  The triangles indicate the calculation in 

the framework of the GT approach for the sharp dis-
tribution (5) according to the formula (16). The rhom-
buses indicate the calculation using the direct varia-
tional method for the diffuse distribution (17) in    
accordance with the expression (25). In both cases, 
calculations were done using the experimental values 

of the one-proton separation energy ps  [15] for the 

proton chemical potential p  in accordance with (4). 

For clarity, the points are connected by dotted lines. 
As can be seen from the figure, the triangles are lo-
cated much lower than the experimental data, while 
the rhombuses are almost identical to them. The dif-
ference between the upper and lower graphs is about 
of 0.5 fm. So, the account of the diffuse edge in the 
spatial distribution of protons increases the proton 
rms radii by about 20 %. The results of the calculation 
using half values of the two-particle nucleus separa-

tion energy 2 2ns  and 2 2ps  almost coincide with 

the calculations for single-nucleon separation ener-
gies. Here and below, we did not perform calculations 
for isotopes with no experimental data are available. 

Fig. 2 shows the results of calculations of the neu-

tron effective rms radii in sodium isotopes as a func-

tion of the mass number A  together with the experi-

mental data. For notations similar to those of Fig. 1 

calculations were done using the one-neutron separa-

tion energy ns  [15] for the neutron chemical poten-

tial n  in accordance with (4). It is seen from Fig. 2 

that the triangles are located below the experimental 

data by about of 0 5  fm. The rhombuses reproduce 

the experimental data fairly well and show the mono-

tonous growth as the mass number increases. One 

should notice the sawtooth behavior for the calcula-

tion marked by triangles. This calculation corre-

sponds to the one-neutron separation energy ns  

taken for the neutron chemical potential. The saw-

tooth behavior disappears and the A-dependence of 

neutron rms radius becomes monotonous if we use 

the half-value of the two-neutron separation energy, 

2 2,ns   for the neutron chemical potential, see 

squares connected by the dashed line in Fig. 2. Such 

sawtooth dependence is a manifestation of the pairing 

effect which contributes to the single neutron separa-

tion energy ns  and cancels out in 2 2.ns   The pai-

ring effect is not that pronounced if the diffuse neu-

tron distribution is used, the calculations using ns  

(circles) and 2 2ns   (rhombuses) for the neutron 

chemical potential are practically coincided, see 

Fig. 2. It should be noted that in our model the pairing 

effects are manifested exclusively through the expe-

rimental values of one-particle neutron and  proton  

Na isotopes 

Na isotopes 

3.5 

2.5 
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chemical potentials. We note, that the use of experi-

mental values of qs  for chemical potentials still does 

not allow to reproduce well the fine structure of the 

mass number dependence of measured rms radii. 
 

 Δrnp, fm 

 
                                                     A 

Fig. 3. Difference npr  between the effective rms radii 

of the neutron and proton spatial distributions as a func-

tion of A  for Na isotopes. The notations are the same 

as in Figs. 1 and 2. 
 

Figs. 3, 4, and 5 depict the calculation results for 

the difference between the neutron and proton rms  

radii 
 

2 2

np n p
r r r = −  

 

for Na, Sn, and Pb isotopes in comparison with the 

experimental data [16]. Fig. 3 shows the difference 

between Figs. 2 and 1. As seen from Fig. 3 the expe-

rimental data are described quite well with all four 

calculations presented. Although Figs. 1 and 2 show 

that step-like distributions underestimate the rms radii 

by an average of about 20 %, nevertheless, when cal-

culating the difference, such shifts are mutually com-

pensated. The diffuse distribution calculations 

demonstrate slightly steeper slopes than the stepped 

distribution calculations. This can be explained by the 

fact that for the diffuse distribution, the rms neutron 

radii increase more rapidly with the increase of the 

number of neutrons N  than for the step-like distri-

bution. The fine structure, however, is not repro-

duced, especially within the region of neutron-defi-

cient isotopes. In general, the calculations with    

diffuse distribution are better to describe the experi-

mental data. 

In Figs. 4 and 5 there is a noticeable difference (of 

about 25 - 30 %) between two types of calculations 

which correspond to the diffuse and stepped nucleon 

distributions. The calculations for the diffuse nucleon 

distribution (marked as rhombuses) give a better de-

scription of the experimental data and are located 

higher than calculations for the stepped nucleon dis-

tribution (marked as triangles). In both Figs. 4 and 5 

the sawtooth A-dependence is clearly seen for npr  

obtained using single nucleon separation energies 

.qs  This indicates the pairing effect contribution to 

the isotopic difference in the root means square radii. 

The sawtooth dependence is eliminated by the use of 

the half-value of the experimental two-nucleon sepa-

ration energies 2 2ns   and 2 2ps   for the corre-

sponding chemical potentials, see squares and circles 

in Figs. 4 and 5. 
 

 Δrnp, fm 

 
                                           A 

 Δrnp, fm 

 
                                            A 

Fig. 4. Difference npr  between the rms radii of the neu-

tron and proton spatial distributions as a function of A  
for Sn isotopes. The notations are the same as in Fig. 3. 
The experimental data were taken from Refs. [16 - 18]. 

Fig. 5. Difference npr  between the rms radii of the neu-

tron and proton spatial distributions as a function of A  
for Pb isotopes. The notations are the same as in Fig. 3. 
The experimental data were taken from Refs. [19 - 21]. 

 
  

Na isotopes 
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The isotopic shift npr  between the neutron and 

proton rms radii (neutron skin) is presented in Fig. 6 

as a function of the asymmetry parameter X  for dif-

ferent nuclei. The experimental data (symbols with 

error bars) are taken from [16] where the isotopic dif-

ference between the rms radii was estimated as 

( 0 04 0 03) (1 01 0 15) .npr X = −    +     The result of 

this linear fit is presented by the dashed line in Fig. 6. 

Calculations shown in Fig. 6 were performed using 

one-particle separation energies for the sharp (trian-

gles) and the diffuse (rhombuses) nucleon distribu-

tions. As seen from the figure, both types of calcula-

tions are mostly located within the limits of experi-

mental errors. Fig. 7 shows similar calculations as in 

Fig. 6 except half the values of the two-particle sepa-

ration energy are taken for the chemical potentials  

instead of the one-particle one to exclude the pairing 

effect.  

 

                  Δrnp, fm 

 
                                                                          X 

Fig. 6. Difference npr  between the rms radii of the neutron and proton spatial distributions as a function of the asym-

metry parameter X  for a set of nuclei. The experimental data are taken from [16], the dashed line is the linear       

approximation taken from [16], the triangles are the calculation in the framework of the GT approach, the rhombuses 

are the calculation for the diffuse distribution. 
 

                   Δrnp, fm 

 
                                                                          X 

Fig. 7. Difference npr  between the rms radii of the neutron and proton spatial distributions as a function of the asym-

metry parameter X  for a set of nuclei. The experimental data are taken from [16], the dashed line is the linear       

approximation taken from [16], the squares are the calculation within the GT approach, the circles are the calculation 

for the diffuse distribution. 
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In contrast to the significant shift of about 0.5 fm 
in proton and neutron rms radii due to the presence of 
diffuse layer in spatial nucleon distribution (compare 
triangles and rhombuses, respectively, in Figs. 1 and 
2), the contribution from the diffuse layer has an only 

slight effect on the isotopic shift npr  as can be con-

cluded from Figs. 6 and 7 paying attention to the lo-
cation difference between triangles and rhombuses in 
Fig. 6 and also between squares and circles in Fig. 7. 

The reason for the weak sensitivity of npr  on the 

presence of the diffuse layer is that the contributions 
to rms radii gained from the diffuse surface are par-
tially canceled in the resulting isotopic difference. 
This justifies the application of simple nucleon distri-
bution (5) in describing the properties of the neutron 

skin npr .  

 

4. Conclusions 
 

In this paper, we have studied the influence of the 
diffuse surface of a nucleus on its rms radii and their 
difference by comparing the results of calculations for 
two cases. In the first case, in the framework of the 
Gibbs - Tolman approach, we considered the stepped 
spatial distribution of nucleons having formal 
equimolar radius located within the surface region of 
a nucleus. The bulk density was determined by     
adjusting the values of the chemical potentials to their 
experimental values using the nuclear matter equation 
of state. In the second case, the direct variational 
method was used applying a Fermi-like distribution 
function for the spatial distribution of nucleons. The 
neutron and proton densities in the center of a nucleus 
were normalized to the values obtained within the 
Gibbs - Tolman approach. 

It is found that the use of the diffuse nucleon dis-

tribution gives a better description of the experimen-

tal rms radii as demonstrated in Figs. 1 and 2 for   

sodium isotopes. The contribution from the diffuse 

surface layer increases the neutron and proton rms  

radii by about 20 % as compared to the stepped    

nucleon distribution. For sodium isotopes, the neu-

tron rms radius exhibits a monotonic increase with  

increasing mass number as seen from Fig. 2.  

The isovector shift npr  between the neutron and 

proton rms radii was calculated for tin and lead iso-

topes using both the diffuse and stepped nucleon dis-

tributions. For both tin and led isotopes the use of dif-

fuse Fermi-like distribution allows better reproduc-

tion of the experimental values npr . The influence 

of the pairing effect on the isovector shift npr  is 

demonstrated in Figs. 3 and 4 for Sn and Pb isotopes. 

The sawtooth behavior of ( )npr A  reflects the odd-

even effect in the one-nucleon separation energies qs  

used for corresponding chemical potentials. After  

replacing the one-particle separation by the half-value 

of the two-particle separation energy the mentioned 

behavior disappears and practically monotonic de-

pendence on the mass number is obtained for npr . 

The calculations of the neutron skin for a certain set 

of nuclei, from light to heavy masses, depending on 

the asymmetry parameter, show that both models  

describe the experimental data within the experi-

mental errors.  
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ВПЛИВ ПОВЕРХНЕВИХ ЕФЕКТІВ НА НЕЙТРОННУ ШКІРУ В АТОМНИХ ЯДРАХ 
 

Досліджено вплив дифузного поверхневого шару скінченного ядра на середньоквадратичні радіуси та їхній 

ізотопний зсув. Представлено розрахунки в рамках підходу Гіббса - Толмана з використанням експерименталь-

них значень енергій відокремлення нуклонів. Результати порівнюються з розрахунками, отриманими за допомо-

гою прямого варіаційного методу та пробних фермі-подібних функцій. 

Ключові слова: нейтронна шкіра, наближення Гіббса - Толмана, прямий варіаційний метод, сили Скірма. 
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