SINEPHA ®I3VKA TA EHEPTETHUKA / NUCL. PHYS. AT. ENERGY 22 (2021) 019-029
ANEPHA ®I3UKA

ISSN 1818-331X

NUCLEAR PHYSICS

VK 539.142+539.143 https://doi.org/10.15407/jnpae2021.01.019

S. B. Doma*

Department of Mathematics and Computer Science, Faculty of Science,
Alexandria University, Alexandria, Egypt

*Corresponding author: shdoma@alexu.edu.eg

GROUND AND EXCITED STATE CHARACTERISTICS
OF THE NUCLEIWITHA =6

The binding energy, the root-mean-square radius, the magnetic dipole moment, the electric quadrupole moment, and
the moment of inertia of the nucleus SLi are calculated by applying different models. The translation invariant shell model
is applied to calculate the binding energy, the root-mean-square radius, and the magnetic dipole moment by using two-
and three-body interactions. Also, the spectra of the nuclei with A = 6 are calculated by using the translation-invariant

shell model. Moreover, the ft-value of the allowed transition: ®He {J =0T :1}[3’ — 5L {J o1t T = O} is also cal-

culated. Furthermore, the concept of the single-particle Schrédinger fluid for axially symmetric deformed nuclei is applied
to calculate the moment of inertia of SLi. Also, we calculated the magnetic dipole moment and the electric quadrupole
moment of the nucleus 8Li in this case of axially symmetric shape. Moreover, the nuclear superfluidity model is applied
to calculate the moment of inertia of 6Li, based on a single-particle deformed anisotropic oscillator potential added to it a
spin-orbit term and a term proportional to the square of the orbital angular momentum, as usual in this case. The single-
particle wave functions obtained in this case are used to calculate the magnetic dipole moment and the electric quadrupole

moment of SLi.

Keywords: translation invariant shell model, nuclei with A = 6, binding energy, spectrum, root-mean-square radius,
magnetic dipole moment, quadrupole moment, ft-value, single-particle Schrédinger fluid, nuclear superfluidity model.

1. Introduction

Calculations of the ground- and the excited-state
characteristics of the nucleus °Li have been the sub-
ject of much research [1 - 16]. This is because the nu-
cleus °Li has the most distinguished structure among
all the p-shell nuclei. Two valence nucleons in the p-
shell are weakly coupled to the core consisting of the
four s-shell nucleons. The correlation between the
two valence nucleons plays the most important role.
If, as might be expected from the simple scheme for

filling shells, °Li had the configuration “He 1p3,,

according to the empirical rule for forming moments
in odd-odd nuclei, its spin should be 3. It may be
assumed that this empirical rule is not obeyed; in the
®Li nucleus the spins of the two nucleons add up in
such a way as to form a total spin of 1. This system
could have a magnetic dipole moment of 0.63 (N.M.)
whereas the experimental value is 0.82 N.M. On the

other hand, two nucleons in a 1p2, the state should

have a large quadrupole moment, whereas the exper-
imental value is -0.083 e barns. It is apparent that in
the Li nucleus we are dealing with an irregularity in
the system for filling levels. For these reasons, many
models have been applied for this nucleus. Among
these models are: the intermediate-coupling shell
model [1, 2], the cluster model [3 - 5], the a-deuteron
model [6], the shell model and the large space shell

model [7 - 9], the no-core shell model (NCSM) [10,
11], the large-basis shell-model (LBSM) [12], and the
translation invariant-shell model (TISM) [13 - 16].

The NCSM [10, 11] is an ab initio configuration-
interaction (Cl) method that has achieved a good
description of the low-lying states and nuclear reac-
tions up through p-shell nuclei. This method uses the
Lanczos algorithm to compute a few lowest-lying ei-
genstates and eigenvalues of a realistic Hamiltonian
matrix whose elements are calculated in an m-scheme
basis, i.e., basis of the Slater determinants constructed
from single-particle wave functions of the harmonic
oscillator. The NCSM and the LBSM are very close
to the TISM and the three models are applied success-
fully to the ground and the excited state characteris-
tics of the nucleus °Li.

The TISM considers the nucleus as a system of
non-interacting quasi-particles and enables us to apply
the algebraic methods for calculating the matrix ele-
ments of operators that correspond to physical quanti-
ties. The bases of this model are constructed in such a
way that they will have a certain symmetry with
respect to the interchange of particles and have definite
total angular momentum. This model has shown good
results for the structure of light nuclei [17 - 23].

The large quadrupole moments observed in some
nuclei, which do not belong to closed shells, implied
a collective deformation and thereby a rotational de-
gree of freedom [24, 25]. The most central parameter
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of collective rotation is the moment of inertia of de-
formed nuclei [25, 26]. The study of the velocity
fields for the rotational motion of the axially symmet-
ric deformed nuclei led to the formulation of the so-
called Schrodinger fluid [27, 28] and to a simple
method for calculating the moments of inertia of axi-
ally deformed nuclei [29, 30].

In a previous paper [31], Doma presented the re-
sults of calculating the binding energy (B. E.), the
spectrum, the root-mean-square radius, the magnetic
dipole moment, the electric quadrupole moment, and
the moment of inertia of the nucleus °Li by using
truncated bases of the USM corresponding to N <8
and using two-body potentials only.

In the present paper, the ground- and the excited-
state wave functions of the nuclei with A = 6 are
expanded in series in terms of the TISM basis func-
tions corresponding to the number of quanta of exci-
tation 2< N <11 in order to calculate the ground and
the excited state characteristics of these nuclei. For
the nucleon-nucleon interaction, we used the Gogny,
Pires, and De Tourreil (GPT) interaction [32] and the
Av8 potential [33, 34]. The GPT potential is a smooth
realistic local nucleon-nucleon potential suitable for
Hartree - Fock (HF) calculations. It gives an accepta-
ble fit to two nucleon data up to 300 MeV and reason-
able properties for finite nuclei, particularly the radii,
for the HF approximation. It consists of central, spin-
orbit, tensor, and quadratic spin-orbit terms. The ra-
dial dependences are represented by sums of Gaus-
sian functions. The potential of this type is particu-
larly suited for calculations of nuclear states and re-
actions because it can be handled easily. Especially,
it simplifies calculations in the harmonic oscillator
shell model. The Av8 potential is derived from the re-
alistic AV18 interaction by neglecting the charge de-
pendence and the terms proportional to L2 and (L.S)%
Furthermore, in this paper, we omitted the electro-
magnetic part of the interaction. This potential is lo-
cal, and its spin and isospin dependencies are repre-
sented by operators. For the three-nucleon interac-
tion, we used the Urbana UlX-potential [34, 35].
Accordingly, the energy eigenvalues and the corre-
sponding eigenfunctions of the different states of the
nuclei with A = 6 are calculated as functions of the
oscillator parameter Aw, which is varied in a wide
energy range in order to obtain the best spectrum of
the nucleus. The ground-state nuclear wave functions
of °Li which are obtained from the diagonalization of
the ground-state Hamiltonian matrices are used to cal-
culate the root-mean-square radius of °Li as a func-
tion of 2w by using the two nucleon-nucleon interac-
tions alone, and by adding to them the three-nucleon
interaction. Furthermore, the nuclear supermultiplet
model [36] is then applied to calculate the magnetic
dipole moment of éLi by using the bases of the TISM.

Moreover, the ft-value of the allowed transition: *He
{J“ =0T :1}[5‘ — 6Li{\] T =17 T’=0} is also
calculated.

Also, we applied the concept of the single-particle
Schrodinger fluid to construct the ground state of the
nucleus °Li by assuming that this nucleus is deformed
and has an axis of symmetry. Accordingly, the crank-
ing-model moment of inertia and the rigid-body mo-
ment of inertia of the nucleus °Li are calculated as
functions of the deformation parameter (3 and the non-

deformed oscillator parameter % , which is given in

terms of the mass number A, the number of protons Z
and the number of neutrons N [37]. We also calcu-
lated the magnetic dipole moment and the electric
quadrupole moment of the nucleus °Li in this case of
axially symmetric shape.

Furthermore, we finally considered a single-parti-
cle deformed potential consisting of an anisotropic
oscillator potential added to it a spin-orbit term and a
term proportional to the square of the orbital angular
momentum of the nucleon to calculate the single-par-
ticle energy eigenvalues and eigenfunctions for a nu-
cleon in a deformed non-axial nucleus [38]. As a con-
sequence, the ground-state of the nucleus °Li is con-
structed and its moment of inertia is calculated by
applying the superfluidity nuclear model of Belyaev
[39] as a function of the deformation parameter 3, the
non-axiality parameter y, and the non-deformed oscil-
lator parameter hwg. The single-particle wave func-
tions which are obtained in this case are used to cal-

culate the magnetic dipole moment and the electric
quadrupole moment of the nucleus °Li.

2. The spectrum, the root-mean square radius,
and the magnetic dipole moment

In the TISM, the Hamiltonian of a nucleus with
mass number A, and two- and three-body interactions
are usually written as [22, 23]

H=H"+v'+v", 2.1)
where
1 & (p-p)° 1
HO = =3 2000 —me?(r-r)? | (2.2
AZ[ S oMo’ (-1)* | (22)
is the TISM-Hamiltonian,
, A ma)Z 2 A .
v :Z{V(‘ri—rj‘)— > (ri_ri)}:z\/u
1=i<]j 1=i<]j
(2.3)
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is the residual nucleon-nucleon interaction, and

A
" "
V"= Zvijk (2.4)
1=i<j<k
_ + +
¢bﬂ1 ..... ay Iy o by o iy

and

EY) = [N +§(A-l)}hoa.

is the three-body interaction. The eigenfunctions and

eigenvalues of the Hamiltonian H ©) are given by [14
- 16, 22, 23]

a, ;e { zh;? } (2.5)
(2.6)

Because of the symmetry properties of the func- | N. The functions (2.5) are symbolically denoted by

tions (2.5), they can be used as bases for irreducible
representations (IRs) of symmetric tensors of the rank

AT M, TsMgM; =|AN{p}(v

Ja[f](rp)LM,; [ f]ST™ M,

[14, 22, 23]

2.7)

where I', and I'g are the sets of all orbital and spin-isospin quantum numbers, respectively. In terms of these
functions, one can construct bases with total angular momentum quantum number J, total isotopic spin quan-

tum number T, and parity = as follows [14]

\AJ“TMJMT=ZC§"T Y. (LM, SM[IM,)|AT M, ; TsMgMy,
r

M| +Mg=M;

where I is the set of all quantum numbers in I", and
I's and (LM_,SM¢|IM;) are Clebsch - Gordan co-
efficients of the rotational group SO, . The coeffi-

cients C"" in Eq. (2.8) are the state-expansion coef-

ficients, where the number of quanta of excitations N
is allowed to be either even or odd integer depending
on the parity of the state . It is seen from Eq. (2.2)

that the Hamiltonian H(O) is free of spurious states,
which correspond to the nonzero motion of the center
of mass of the whole nucleus.

Concerning the two-body potential, given by

V(‘ri - ‘), we used the GPT-potential [32] and the

Av8'-potential [33, 34]. The two potentials when used
for the nuclei with mass numbers A =3, 4, and 7
gave good results for their ground and excited state
properties [16, 17, 20 - 23]. For the three-body poten-
tial, we used the Urbana UIX potential [34, 35]. The
methods of calculating the one-, the two- and the
three-particle  fractional parentage coefficients
(FPCs) are given in [36, 40, 41]. Also, the methods of
calculating the matrix elements of the nuclear charac-
teristics by using the TISM are given in [14, 15, 20 -
23]. Accordingly, we calculated the energy eigenva-
lues and eigenfunctions of the ground- and the excited
states of SLi.

The root-mean-square radius is calculated from
the relation [14, 17, 36]
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(2.8)

| R=/r? +(Riu) - (2.9)

In Eq. (2.9), r, =0.85 fm is the proton radius and the

second term under the root is the expectation value of
the operator

(2.10)

The detailed methods of calculating R can be found
in [14, 15] by using the bases of the TISM.

The nuclear magnetic dipole moment p is defined
as the expectation value of the operator {1, which can

be written in the form [14, 36]

fi=fi, +iiy, (2.11)
where [1, is the orbital part, given by
1 A
i, = EZ(l—ztOi )i (2.12)
i=1

and the spin-isospin part [i, is given by

A

R :Z[(“p +“n)+2(

i=1

o )t S0 (213)

calculated in a state with M; = J . In equations (2.12)
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and Eq. (2.13), (,;, S, and ty; arethe Z -components
of the orbital angular momentum, the spin, and the
isotopic spin of the i"™-nucleon, respectively u, and
u, are the proton and the neutron magnetic moments,

respectively. The method of calculating the nuclear
magnetic dipole moment can be found in [23].

3. The ft-value of the allowed B~-transition

The allowed B~-decay is characterized by the
guantity ft, which is related to the transition by the
following simple relation [14, 21, 36]

6200
ft=— s, 3.1
S? +1.419m° (31)

The quantities G*and 90t* are given in terms of the
matrix elements of the two operators

S=523 (i), (3.2)
and _
M, =F242> 1t (i)s; (i), (3.3)

respectively. These operators are invariant with re-
spect to the group SU,. The operators which define
the allowed B~-decay, and hence their matrix ele-
ments, do not depend on the orbital coordinates of the
wave function, i.e., on most of the quantum numbers
of this nuclear wave function. For this reason, it is
appropriate to use the approximations of the nuclear
supermultiplet model [20 - 22, 36].

The matrix elements of the operator given by
Eqg. (3.2) depend only on the total isotopic spin T and
its z-component M, of the ground state wave func-

tion and it is easy to prove that
& =[TM,[&TM; [ =[T (T +1)-M;M; Js™
- T T — TT TM'Tﬂ'
(3.4)

It is noted that the matrix elements in Eq. (3.4) are di-
agonal with respect to all the other quantum numbers.

The operator 13, represents the spin and the

isospin coordinates of the nucleons, and can be writ-
ten in an irreducible form relative to the conversions
of the symmetric group S, in the following form

My, =F2N2) Sl 9, (35)
29

where &% and §5% are irreducible tensors of the
groups SU,and S,, respectively, y takes the IRs

[A] and [A-1,1], and q is its projection. To calcu-
late the matrix elements of the operator (3.5), we
apply the Wigner - Eckart theorem for the two groups
simultaneously.

In the present calculation of the ft-value, we are
concerned with the following transition

*He {37 =0T =1fp” - °Li{J" =17, T'=0.

The method of calculating the required matrix el-
ements of the quantity ft can be found in [14, 21].

4. The nuclear moment of inertia
and the quadrupole moment

According to the concept of the single-particle
Schrodinger fluid for axially symmetric deformed nu-
clei, the cranking model, and the rigid-body model
moments of inertia of a given nucleus are calculated
by the following expressions [28 - 30]

1
~ E 1 (1+c5

Eﬂ"z (1+q)+é(1—q)},

Cr:co_§6+20'
4.2)
1
~ _E 1 (1403 3
Jri = cog 6+26(1—G) [(1+q)+0(1 q)]’
4.2)

where q is the anisotropy of the configuration, which
is defined by

(4.3)

and E is the total energy of the oscillator

E= Z{hmy (n, +n +1)+ho, (nz + %ﬂ (4.4)

occ
In Egs. (4.3) and (4.4) n,,n,
guantum numbers of the oscillator. Also, in Egs. (4.1)
and (4.2) o is a measure of the deformation of the
potential and is defined by

and n, are the state

0, -0,

c= (4.5)

O, +,

In the above equations, we use the well-known
Nilsson angular frequencies [42]

22 ISSN 1818-331X NUCLEAR PHYSICS AND ATOMIC ENERGY 2021 Vol. 22 No. 1



GROUND AND EXCITED STATE CHARACTERISTICS

(4.6)

@.7)

where & is a deformation parameter related to the
well-known deformation parameter 3 by

3’5
d=—,]—FB.
2 475B

The frequency ®, in Egs. (4.6) and (4.7) is given in

(4.8)

terms of the non-deformed frequency mg by [42]

1

4 16 5\ 6
o=, (8)=|1-—82-—8%]| . 4.9
o = (3) 0(3 27) (4.9)
The value of the non-deformed oscillator parame-
ter hmg depends on the mass number A, the number
of neutrons N, and the number of protons Z. An

approximate formula for hcog is given by [37]

1
38.6A 3

-
{1+ 1.146 ~ 0.191(N —z)}

ho) = (4.10)

A

In this case of axially symmetric deformed nuclei,
the magnetic dipole moment can be calculated using
the same technique given by Nilsson [42].

Furthermore, assuming a charge distribution in ac-
cordance with the Thomas - Fermi statistical model,
one obtains, for the case of axially symmetric de-
formed nuclei, the intrinsic quadrupole moment [42]

Q,=08 ZeR28(1+ 2—36j (4.11)

where Z is the number of protons and R is the radius
of charge of the nucleus. In (4.11) Q, is calculated to

the second order in the deformation parameter 5. The
relation between the measured quadrupole moment,
denoted by Qg, and Q, is given by

3KZ-1(1+1)
&= 2i+a)

(4.12)
where | is the total spin of the nuclear state and K is
its component along the body-fixed z-axis. The
intrinsic quadrupole moment is then calculated for a
nucleus with an axis of symmetry by calculating the

charge radius using the single-particle wave functions,
as a function of the deformation parameter 5, and

hence the measured quadrupole moment is obtained.

5. The nuclear moment of inertia
and the quadrupole moment
when the nucleus does not have an axis
of symmetry

Consider a nucleon that is moving in a deformed
nuclear field whose Hamiltonian is given by [38]

2
H=—1" g2 + M 2r2 4Cls+DI? -
2m 2

—Magr’BeosyY,, (6,¢)—

N

- Ma)r?Bsiny {Y,, (6,¢)+Y, ,(6,¢)}, (5.1)

where Y, , (8, @) are the spherical harmonics, B is
the deformation parameter and vy is the non-axiality

parameter. The constants C and D in equation
Eq. (5.1) are given by [38, 42]

C =-2yhoy, D =—uyho, (5.2)

where y takes values in the interval 0.05<y <0.08
and p depends on the number of quanta of excitation
N as given by Nilsson [42]. The Schrédinger equa-
tion representing the motion of a single nucleon in the
non-axially deformed nuclear field, whose Hamilto-
nian operator is given by Eq. (5.1), can be solved [38]
by: (i) applying the variational method for the fifth
term in Eq. (5.1) with respect to the eigenfunctions of

the first four terms |NIAZ), and then (ii) applying the
stationary non-degenerate perturbation method for
the last term in (5.1) with respect to the eigenfunc-
tions ‘NQ"> which results from the application of the
variational method. As a result, the single-particle
energy eigenvalues and eigenfunctions ‘Q“> of a nu-

cleon in a deformed nuclear field can be calculated
for every level, with the given value of the z-compo-
nent of the total angular momentum Q and parity ©
as functions of the potential parameters y, and p, the
deformation parameter [, and the non-axiality
parameter 1.

Hence, the moment of inertia of a deformed

nucleus that does not have an axis of symmetry is then
given by applying the superfluidity model [38, 39]

et :hzz<i|JX|k2> {1— (G —2)(G —A)+A? }

(5.3)
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where ; are the eigenvalues of the self-consistent
field, the eigenvalues of the Hamiltonian operator
(5.1), 1 is the chemical potential and the energy of
elementary excitations of the nucleus, E;, is given by

E =(&—2) +A% (5.4)
In Eq. (5.4), A isthe energy gap and A is the chem-
ical potential given by [38]

=Np,n’

Z 1- Gi—2

- (5.5)
i (G —A) +A?
where the summation, here, runs overall distinct neu-

tron (or proton) energies and N is the number of

protons or neutrons inside the nucleus.

In this case of non-axial deformed nuclei, the in-
trinsic quadrupole moment of a nucleus, consisting of
Z protons, is given by

VA
Qo = ZQ. )
i=1

where the single-particle operator Q; is given by

(5.6)

167 i 2

Q =6 I(¥ar) 120 (00)de (B7)
Carrying out the integration in Eq. (5.7) with
respect to the wave functions ‘Q“> , one then obtains

167 i~i 2
Q =e ?ZCka<Nklk‘r NGl A |Y2’0|ImAm>.

k,m

(5.8)

Filling the single-particle wave functions ‘Q“> for
the nucleus °Li in its ground-state with two protons

and two neutrons in the Os-level and one proton and
one neutron in the 1p-level, it is then possible to cal-
culate the quadrupole moment by calculating the nec-
essary matrix elements of Eq. (5.8) and evaluating the

expansion coefficients C. of the functions ‘Q”> in

terms of the functions | NIAZ).

6. Results and discussions

In the present paper, we applied the TISM with a
large number of bases belonging to the number of
guanta of excitation 2< N <11 to calculate the B. E.,
the root-mean-square radius, and the magnetic dipole
moment of the nucleus °Li. Furthermore, the spec-
trum of the nuclei with A =6 and the ft-value of the

allowed transition: °He {J“ =0T =1}[3* — — 5L
{J o1t T = 0} are also calculated. In the calcula-

tions, which have been carried out in this part, we
used two nucleon-nucleon interactions, namely: the
GPT [32] and the Av8' [33, 34] together with the Ur-
bana IX three-body interaction [34, 35]. To our
knowledge, no one reached this large basis TISM cal-
culations for the nuclei with A = 6 before.

In Fig. 1 we present the variation of the B. E. of
®Li, in MeV, with respect to the oscillator parameter
ho by using the GPT and the Av8' two-body poten-
tials and the improved values obtained by adding the
Urbana UIX three-body potential. From this figure,
we notice that all the potentials produced maximum
values (minimum ground-state energy) as should be
expected from the behavior of the TISM. Also, the
results obtained by using the Av8' potential together
with the UIX potential are better than those obtained
by using the other potentials. Moreover, the variation
of the root-mean-square radius (R) of °Li with respect
to the oscillator parameter %o is given in Fig. 2, for
the three potentials. It is seen from this figure also that
all the potentials have minimum values and that the
Av8' potential together with the UIX potential gave
the best values of R among the other potentials.

Binding Energy of °Li

B. E., MeV
32
31
30 o
29 . *
28 . ¢
27 ¢
26 —e— GPT pot
25
» *—GPT + UIX
8 9 10 11 12 13

Av8' pot
Av8' + UIX

14 15 16 17 18 19 20

ho, MeV

Fig. 1. Variation of the B. E. of °Li with % for the used potentials.
(See color Figure on the journal website.)
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R, fm

Root mean-Square Radius of °Li

3.7
3.5
33
3.1
29
2.7
25

2.3
8 9 10 11 12 13

—e—GPT

GPT+UIX

Av8'

Av8'+UIX

14 15 16 17 18 19 20

ho, MeV

Fig. 2. Variation of the root-mean-square radius of 5Li with /i for the used potentials.
(See color Figure on the journal website.)

In Table 1, we present the values of the B. E., the
root-mean-square radius (R), the magnetic dipole
moment (u) of the nucleus °Li, and the ft-value of

the allowed transition: °He {J“zOﬂTzl}B’—)
— SLi {J v =1+;T’=0} by using the three poten-
tials. The corresponding experimental values are

given in this table. Also, in Table 1 we present the
values of 7w, for which the spectra of the nuclei with
A =6 are in good agreement with the corresponding
experimental values. Previous results obtained by us-
ing the Doma-potential (D1 [16]) with basis-func-
tions of the TISM belonging to N <6 [16] are also
given.

Table 1. B. E., root-mean-square radius, and magnetic dipole moment
of 6Li and the ft-value of the allowed p~—-decay

Case B. E., MeV R, fm u, N.M. ft-value, s ho, MeV
GPT 27.634 2.491 0.836 886.94 14
AvS' 29.744 2.361 0.839 885.17 15
GPT + UIX 30.323 2.392 0.828 881.19 15
Av8' + UIX 30.914 2.351 0.832 880.22 16
TISM + D1 [16] 24572 2.147 0.782 — 20
Exp. [36] 32.0 2.32 0.822 862 + 17 -

The spectra of the even and the odd parity states
of the nuclei with A =6 are given in Table 2, by using
the three potentials. The corresponding experimental

values [44] and previous values obtained by using the
NCSM with the CD-Bonn potential [45] are also
given in Table 2.

Table 2. The spectra of the even- and the odd-parity states of the nuclei with A = 6.
The energies are in MeV

J5T Exp. [44] GPT Av8' GPT + UIX Av8' + UIX CD-%%?!YIMS]
3,0 2.186 2231 | 2444 2.204 2411 2.841
0"1 3.563 3.397 | 3.101 3.552 3.397 3.330
2,0 4.310 4373 | 4.566 4.355 4.309 4.610
27,1 5.366 5221 | 5494 5.288 5.398 5.975
17,0 5.652 6.421 | 6.533 6.192 5.838 6.544
25,1 6.633 6.883 | 7.707 6.771 6.999 9.199
2-,0 6.941 7.222 | 8821 7.148 7.418 -
1,0 8.732 8.177 | 9.542 8.456 8.959 -
07,0 9.302 9.166 | 10.431 9.222 9.676 -
11 - 9.452 | 10.995 9.303 9.872 9.937
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From Table 1 we see that the resulting values of
the B. E. and the root-mean-square radius of °Li are
in good agreement with the corresponding experi-
mental values, especially by adding the three-body
interaction. Also, the inclusion of states correspond-
ing to the number of quanta of excitations 6 < N <11
mainly improved the previous results obtained by
using the Doma-potential (D1 [16]) with basis-func-
tions of the TISM belonging to N <6 [16].

Furthermore, we notice from Table 2 that the
obtained spectra of the nuclei with A =6, for the even-
and the odd-parity states, are in good agreement with
the corresponding experimental one, especially in the
case of the GPT + UIX potentials.

The calculated values of the magnetic dipole mo-
ment of the nucleus °Li, in N.M., by applying the
three nuclear models, corresponding to the spherical,
the axially symmetric, and the nonaxial deformed
cases are given in Table 3.

Table 3. The magnetic dipole moment of 6Li

Case ¥ B he, MeV i, N.M.
Spherical (GPT + UIX) 0° 0.0 14 0.828
Spherical (Av8'+UIX) 0° 0.0 15 0.832
Axially Symmetric 0° 0.26 9.594 0.826
Asymmetric 30° 0.28 9.594 0.939
Experimental — 0.20 - 0.26 — 0.822 [36]

The calculated values of the electric quadrupole

moment of °Li, in em barns, are given in Table 4 for

the axially symmetric case (y =0°) and for the non-
axial case corresponding to y = 30°.

Table 4. The electric quadrupole moment of 5L.i

Case v B | neld, MeV | Qs, embarns | Qep, € M barns [46]
Symmetric 0° | -0.06 9.594 -0.078 -0.083
Asymmetric | 30° | -0.12 9.594 -0.074 -0.083

In Table 5, we present the calculated values of the
reciprocal moment of inertia of the nucleus °Li by

using the concept of the single-particle Schrédinger
fluid, for the axially symmetric case, for both cran-
king and the rigid-body models, and the nuclear

superfluidity model for the non-axial case. Also, we
present in Table 5 the corresponding experimental
value. The values of the deformation parameter f3, the
non-axiality parameter vy, and the oscillator parameter

ho) are also given in Table 5.

Table 5. Reciprocal moment of inertia of 6Li

2
Case v B hoy, MeV Z_” keV
J
Cranking 0° 0.27 9.594 493.44
Rigid body 0° 0.24 9.594 716.04
Superfluidity 250 0.28 9.594 548.58
Experimental — 0.20 - 0.26 — 500.0 [47]

In the case of the superfluidity model, the best val-
ues of the model parameters are: % =0.08,
A =18.121 MeV, and A =0.833 MeV, for the poten-
tial parameter, the chemical potential, and the energy
gap, respectively. These parameters gave a reciprocal
moment of inertia of °Li in better agreement with the
corresponding experimental value.

It is seen from Table 5 that the calculated value of
the cranking-model reciprocal moment of inertia is in
better agreement with the corresponding experi-

mental value rather than the other values. The disa-
greement between the value of the rigid-body recip-
rocal moment of inertia and the corresponding exper-
imental value is because the pairing correlation is not
taken into concern in this model [26, 30]. Moreover,
it is seen from Table 4 that the calculated value of the

quadrupole moment of °Li in the case y=0°, the

axially symmetric case, is in better agreement with
the corresponding experimental value rather than that

of the case y = 30°.
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7. Conclusions

In the first part of this paper, we considered the
nuclei with mass number A = 6 as spherical nuclei
and applied the TISM with the number of quanta of
excitation 2< N <11. In the calculations which have
been carried out in this case, we used two nucleon-
nucleon potentials together with a three-nucleon
potential. Accordingly, we calculated the B. E.,
the root-mean-square radius, and the magnetic
dipole moment. Also, the spectra of the nuclei
with A = 6 are calculated. Moreover, the ft-value

of the allowed transition: °He {J“ =0T =1}[3’ -

— 5L {J L A 0} is also calculated. In the sec-

ond part of this paper, we applied the concept of the
single-particle Schrodinger fluid for axially symmet-
ric deformed nuclei to calculate the moment of inertia
of °Li. Also, we calculated the magnetic dipole mo-
ment and the electric quadrupole moment of the nu-
cleus °Li in this case of axially symmetric shape. Fi-
nally, in the third part of our investigation, we consid-
ered the nucleus °Li as deformed and does not have
an axis of symmetry. Accordingly, we applied an
anisotropic single-particle oscillator to represent the
average potential field of the nucleons inside the

nucleus and applied the variational method followed
by the stationary nondegenerate perturbation method
to calculate the single-particle energy eigenvalues
and the eigenfunctions of the nucleon inside this nu-
cleus. Accordingly, we calculated the magnetic di-
pole moment and the electric quadrupole moment of
®Li in this case. Also, in this case, we applied the nu-
clear superfluidity model to calculate the moment of
inertia. This study has identified that all the applied
models and methods are appropriate and correctly de-
scribe the nuclei with mass number A = 6. The second
major finding was that the inclusion of states corre-
sponding to the number of quanta of excitations
6 < N <11 mainly improved the previous results ob-
tained by using the Doma-potential (D1 [16]) with ba-
sis-functions of the TISM belonging to N <6 [16].
Furthermore, the inclusion of the UIX- three-nucleon
interaction mainly improves the results of the ground-
state characteristics of the nucleus °Li, as well as the
spectra of the nuclei with mass number A = 6. More-
over, in the case where the nucleus is assumed to be
deformed and has an axis of symmetry, the obtained
results concerning the moment of inertia, the mag-
netic dipole moment, and the electric quadrupole mo-
ment, are in better agreement with the corresponding
experimental values.
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XAPAKTEPUCTUKU OCHOBHOTI'O TA 3BYUKEHUX CTAHIB
SIIEP3 A =6

Enepris 38’ 513Ky, cepeTHbOKBaAPaTUIHUH padiyc, MATHITHAH AUTTOTBHIA MOMEHT, eJIEKTPUIHAN KBaIPYIIOIbHIH MO-

MEHT Ta MOMEHT iHepILii sypa 8Li 6ynm oGumcieni 3a IOMOMOror pizHUX Mosiesel. TpaHCsLiliHO-iHBapianTHa 060JI0H-
KOBa MOJieJIb OyJia 3aCTOCOBaHa JUIsl O0YHMCIIEHHS eHepTii 3B 53Ky, CepeIHbOKBaAPATUIHOTO Pajiyca Ta MarHiTHOTO JIU-
MTOJTFHOT'O MOMEHTY 3 BUKOPHUCTAHHSM JIBO- Ta TPHYACTUHKOBHX B3aeMoIiil. Takox criekTpu saep 3 A = 6 Oynu o0uncieHi
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B TPAHCIAIIHHO-iHBapiaHTHiN 060I0HKOBIH Mozeni. [To Toro x 6yio po3paxoBaHe 3HadeHHs ft 17t mo3BoeHoro mepe-
xomy ®He {J T=0%T =1}B_ — °Li {J T=15T = 0} . Jlns1 pospaxynky MoMeHTy iHepuii ®Li Gys1a 3acTocoBaHa KOHIIE-

MIist oxHOoYacTUHKOBOI piamau Llpeninrepa mis akciaabHO-CHMETPUYIHAX AehOopMOBaHUX siep. Takoxk Oyio po3paxo-
BAaHO MarHITHUH AUITOJFHIA MOMEHT Ta €JIeKTPUIHUHN KBaIPYHIOJIHUNA MOMEHT SApa i st 1ipOTO BUIIAJIKY aKCiaJbHO-
cuMeTpuuHoi ¢popmu. KpiMm Toro, Mozens saepHoi HaAIIMHHOCTI Oyia 3acTOCOBaHA JUIsl OOUMCIICHHS MOMEHTY 1HepIil
SLi, 6a3yr0uKch HA OJHOYACTHHKOBOMY Ae(OPMOBAHOMY AHi30TPOHHOMY OCLIJIATOPHOMY IOTEHIIiai 3 JOJAHUM CITiH-
OpOITaIbHAM UJIEHOM Ta YICHOM, HPOIMOPLIHHUM KBaJpaTy OpOiTAIbHOrO MOMEHTY IMITYJIBCY, SIK 3a3BHYail y LIbOMY
Bunajky. OTpuMaHi 0OJIHOYaCTHHKOBI XBHJIBbOBI (DyHKLIT OyJIM BUKOPHUCTAHI Uil OOYKMCIEHHS. MarHiTHOTO JTUIOJIBHOTO
MOMEHTY Ta eJIEKTPUYHOTO KBaAPYNOIBHOr0 MoMeHTy bLi.

Kniouosi crosa: TpaHCIALIHO-1HBapiaHTHA 000IOHKOBA MOAEINb, Sapa 3 A = 6, eHepris 3B'A3Ky, CHEKTp, CEPEIHbOK-
BaApaTHYHUN paiyc, MarHITHHI JUIIONBHUNA MOMEHT, KBaAPYIOIbHUN MOMEHT, ft-3HAUYCHHS, OJHOYACTHHKOBA PigHHa
peniarepa, MoaeNb sACPHOT HANIUTHHHOCTI.
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