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GROUND AND EXCITED STATE CHARACTERISTICS 

OF THE NUCLEI WITH A = 6  
 

The binding energy, the root-mean-square radius, the magnetic dipole moment, the electric quadrupole moment, and 

the moment of inertia of the nucleus 6Li are calculated by applying different models. The translation invariant shell model 

is applied to calculate the binding energy, the root-mean-square radius, and the magnetic dipole moment by using two- 

and three-body interactions. Also, the spectra of the nuclei with A = 6 are calculated by using the translation-invariant 

shell model. Moreover, the ft-value of the allowed transition: 6He   60 1 Li 1 ;   0;J T J T          is also cal-

culated. Furthermore, the concept of the single-particle Schrödinger fluid for axially symmetric deformed nuclei is applied 

to calculate the moment of inertia of 6Li. Also, we calculated the magnetic dipole moment and the electric quadrupole 

moment of the nucleus 6Li in this case of axially symmetric shape. Moreover, the nuclear superfluidity model is applied 

to calculate the moment of inertia of 6Li, based on a single-particle deformed anisotropic oscillator potential added to it a 

spin-orbit term and a term proportional to the square of the orbital angular momentum, as usual in this case. The single-

particle wave functions obtained in this case are used to calculate the magnetic dipole moment and the electric quadrupole 

moment of 6Li.  
Keywords: translation invariant shell model, nuclei with A = 6, binding energy, spectrum, root-mean-square radius, 

magnetic dipole moment, quadrupole moment, ft-value, single-particle Schrödinger fluid, nuclear superfluidity model. 
 

1. Introduction 
 

Calculations of the ground- and the excited-state 

characteristics of the nucleus ⁶Li have been the sub-

ject of much research [1 - 16]. This is because the nu-

cleus ⁶Li has the most distinguished structure among 

all the p-shell nuclei. Two valence nucleons in the p-

shell are weakly coupled to the core consisting of the 

four s-shell nucleons. The correlation between the 

two valence nucleons plays the most important role. 

If, as might be expected from the simple scheme for 

filling shells, ⁶Li had the configuration 4He 2
3/21p ,  

according to the empirical rule for forming moments 

in odd-odd nuclei, its spin should be 3. It may be  

assumed that this empirical rule is not obeyed; in the 

⁶Li nucleus the spins of the two nucleons add up in 

such a way as to form a total spin of 1. This system 

could have a magnetic dipole moment of 0.63 (N.M.) 

whereas the experimental value is 0.82 N.M. On the 

other hand, two nucleons in a 2
3/21p  the state should 

have a large quadrupole moment, whereas the exper-

imental value is -0.083 e barns. It is apparent that in 

the ⁶Li nucleus we are dealing with an irregularity in 

the system for filling levels. For these reasons, many 

models have been applied for this nucleus. Among 

these models are: the intermediate-coupling shell 

model [1, 2], the cluster model [3 - 5], the 𝛼-deuteron 

model [6], the shell model and the  large  space  shell 

model [7 - 9], the no-core shell model (NCSM) [10, 

11], the large-basis shell-model (LBSM) [12], and the 

translation invariant-shell model (TISM) [13 - 16]. 
The NCSM [10, 11] is an ab initio configuration-

interaction (CI) method that has achieved a good  
description of the low-lying states and nuclear reac-
tions up through p-shell nuclei. This method uses the 
Lanczos algorithm to compute a few lowest-lying ei-
genstates and eigenvalues of a realistic Hamiltonian 
matrix whose elements are calculated in an m-scheme 
basis, i.e., basis of the Slater determinants constructed 
from single-particle wave functions of the harmonic 
oscillator. The NCSM and the LBSM are very close 
to the TISM and the three models are applied success-
fully to the ground and the excited state characteris-
tics of the nucleus 6Li.  

The TISM considers the nucleus as a system of 

non-interacting quasi-particles and enables us to apply 

the algebraic methods for calculating the matrix ele-

ments of operators that correspond to physical quanti-

ties. The bases of this model are constructed in such a 

way that they will have a certain symmetry with  

respect to the interchange of particles and have definite 

total angular momentum. This model has shown good 

results for the structure of light nuclei [17 - 23]. 

The large quadrupole moments observed in some 

nuclei, which do not belong to closed shells, implied 

a collective deformation and thereby a rotational de-

gree of freedom [24, 25]. The most central parameter 
 

©  S. B. Doma, 2021 

http://jnpae.kinr.kiev.ua/
https://doi.org/10.15407/jnpae2021.01.019
mailto:sbdoma@alexu.edu.eg


S. B. DOMA 

20 ISSN 1818-331X   NUCLEAR PHYSICS AND ATOMIC ENERGY  2021  Vol. 22  No. 1 

of collective rotation is the moment of inertia of de-

formed nuclei [25, 26]. The study of the velocity 

fields for the rotational motion of the axially symmet-

ric deformed nuclei led to the formulation of the so-

called Schrödinger fluid [27, 28] and to a simple 

method for calculating the moments of inertia of axi-

ally deformed nuclei [29, 30]. 

In a previous paper [31], Doma presented the re-

sults of calculating the binding energy (B. E.), the 

spectrum, the root-mean-square radius, the magnetic 

dipole moment, the electric quadrupole moment, and 

the moment of inertia of the nucleus ⁶Li by using 

truncated bases of the USM corresponding to 8N   

and using two-body potentials only.  

In the present paper, the ground- and the excited-

state wave functions of the nuclei with A = 6 are  

expanded in series in terms of the TISM basis func-

tions corresponding to the number of quanta of exci-

tation 2   11N   in order to calculate the ground and 

the excited state characteristics of these nuclei. For 

the nucleon-nucleon interaction, we used the Gogny, 

Pires, and De Tourreil (GPT) interaction [32] and the 

Av8' potential [33, 34]. The GPT potential is a smooth 

realistic local nucleon-nucleon potential suitable for 

Hartree - Fock (HF) calculations. It gives an accepta-

ble fit to two nucleon data up to 300 MeV and reason-

able properties for finite nuclei, particularly the radii, 

for the HF approximation. It consists of central, spin-

orbit, tensor, and quadratic spin-orbit terms. The ra-

dial dependences are represented by sums of Gaus-

sian functions. The potential of this type is particu-

larly suited for calculations of nuclear states and re-

actions because it can be handled easily. Especially, 

it simplifies calculations in the harmonic oscillator 

shell model. The Av8' potential is derived from the re-

alistic AV18 interaction by neglecting the charge de-

pendence and the terms proportional to L2 and (L.S)2. 

Furthermore, in this paper, we omitted the electro-

magnetic part of the interaction. This potential is lo-

cal, and its spin and isospin dependencies are repre-

sented by operators. For the three-nucleon interac-

tion, we used the Urbana UIX-potential [34, 35]. 

Accordingly, the energy eigenvalues and the corre-

sponding eigenfunctions of the different states of the 

nuclei with A = 6 are calculated as functions of the 

oscillator parameter  , which is varied in a wide 

energy range in order to obtain the best spectrum of 

the nucleus. The ground-state nuclear wave functions 

of 6Li which are obtained from the diagonalization of 

the ground-state Hamiltonian matrices are used to cal-

culate the root-mean-square radius of ⁶Li as a func-

tion of   by using the two nucleon-nucleon interac-

tions alone, and by adding to them the three-nucleon 

interaction. Furthermore, the nuclear supermultiplet 

model [36] is then applied to calculate the magnetic 

dipole moment of ⁶Li by using the bases of the TISM. 

Moreover, the ft-value of the allowed transition: 6He 

   60 ; 1 Li 1 ;   0J T J T           is also 

calculated. 

Also, we applied the concept of the single-particle 

Schrödinger fluid to construct the ground state of the 

nucleus ⁶Li by assuming that this nucleus is deformed 

and has an axis of symmetry. Accordingly, the crank-

ing-model moment of inertia and the rigid-body mo-

ment of inertia of the nucleus ⁶Li are calculated as 

functions of the deformation parameter  and the non-

deformed oscillator parameter 0
0 , which is given in 

terms of the mass number A, the number of protons Z 

and the number of neutrons N [37]. We also calcu-

lated the magnetic dipole moment and the electric 

quadrupole moment of the nucleus ⁶Li in this case of 

axially symmetric shape. 

Furthermore, we finally considered a single-parti-

cle deformed potential consisting of an anisotropic 

oscillator potential added to it a spin-orbit term and a 

term proportional to the square of the orbital angular 

momentum of the nucleon to calculate the single-par-

ticle energy eigenvalues and eigenfunctions for a nu-

cleon in a deformed non-axial nucleus [38]. As a con-

sequence, the ground-state of the nucleus ⁶Li is con-

structed and its moment of inertia is calculated by 

applying the superfluidity nuclear model of Belyaev 

[39] as a function of the deformation parameter , the 

non-axiality parameter , and the non-deformed oscil-

lator parameter 0
0 . The single-particle wave func-

tions which are obtained in this case are used to cal-

culate the magnetic dipole moment and the electric 

quadrupole moment of the nucleus ⁶Li.  
 

2. The spectrum, the root-mean square radius, 

and the magnetic dipole moment 
 

In the TISM, the Hamiltonian of a nucleus with 

mass number A, and two- and three-body interactions 

are usually written as [22, 23] 
 

  0
,H H V V    (2.1) 

where 
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is the residual nucleon-nucleon interaction, and 
 

 
A

''

1

ijk

i j k

V V
  

    (2.4) 

is the three-body interaction. The eigenfunctions and 

eigenvalues of the Hamiltonian 
 0

H  are given by [14 

- 16, 22, 23]
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and 

    0 3
        A-1

2
E

 
   
 

. (2.6) 

 

Because of the symmetry properties of the func-

tions (2.5), they can be used as bases for irreducible 

representations (IRs) of symmetric tensors of the rank 

N. The functions (2.5) are symbolically denoted by 

[14, 22, 23] 

 

      A Γ M ; Γ A    ; STM M ,L L S S T L S TM M f LM f          (2.7) 

 

where ΓL  and ΓS  are the sets of all orbital and spin-isospin quantum numbers, respectively. In terms of these 

functions, one can construct bases with total angular momentum quantum number J, total isotopic spin quan-

tum number T, and parity  as follows [14] 
 

  Γ

Γ

A , | AΓ M ; Γ ,

L S J

J T
J T L S J L L S S T

M M M

J TM M C LM SM JM M M


 

   (2.8) 

 

where Г is the set of all quantum numbers in ΓL  and 

ΓS  and  ,  |L S JLM SM JM  are Clebsch - Gordan co-

efficients of the rotational group 3SO . The coeffi-

cients Γ
J TC


 in Eq. (2.8) are the state-expansion coef-

ficients, where the number of quanta of excitations N  

is allowed to be either even or odd integer depending 

on the parity of the state  . It is seen from Eq. (2.2) 

that the Hamiltonian 
 0

H  is free of spurious states, 

which correspond to the nonzero motion of the center 

of mass of the whole nucleus.  

Concerning the two-body potential, given by 

( )r ri jV  , we used the GPT-potential [32] and the 

Av8'-potential [33, 34]. The two potentials when used 

for the nuclei with mass numbers A  3, 4, and 7 

gave good results for their ground and excited state 

properties [16, 17, 20 - 23]. For the three-body poten-

tial, we used the Urbana UIX potential [34, 35]. The 

methods of calculating the one-, the two- and the 

three-particle fractional parentage coefficients 

(FPCs) are given in [36, 40, 41]. Also, the methods of 

calculating the matrix elements of the nuclear charac-

teristics by using the TISM are given in [14, 15, 20 - 

23]. Accordingly, we calculated the energy eigenva-

lues and eigenfunctions of the ground- and the excited 

states of ⁶Li.  

The root-mean-square radius is calculated from 

the relation [14, 17, 36] 

  2 2
p NucR r R  . (2.9)  

 

In Eq. (2.9), 0.85pr   fm is the proton radius and the 

second term under the root is the expectation value of 

the operator 
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The detailed methods of calculating R  can be found 

in [14, 15] by using the bases of the TISM. 

The nuclear magnetic dipole moment  is defined 

as the expectation value of the operator ̂ , which can 

be written in the form [14, 36]  
 

 ˆ ˆ ˆ
o    , (2.11) 

 

where ˆ o  is the orbital part, given by 
 

  
A

1

,ˆ
1

1 2
2
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(2.12) 

and the spin-isospin part ˆ o  is given by 
 

    
A

1
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i

t s
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calculated in a state with JM J . In equations (2.12) 
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and Eq. (2.13), 0 ,i  0is  and 0it  are the z -components 

of the orbital angular momentum, the spin, and the 

isotopic spin of the ith-nucleon, respectively. p  and 

n  are the proton and the neutron magnetic moments, 

respectively. The method of calculating the nuclear 

magnetic dipole moment can be found in [23].  
 

3. The ft-value of the allowed -transition 
 

The allowed -decay is characterized by the 

quantity ft, which is related to the transition by the 

following simple relation [14, 21, 36] 
 

 
2 2

6200
  .

1.41
ft s

S M
 (3.1) 

 

The quantities 2 2 and S M  are given in terms of the 

matrix elements of the two operators 
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A

1
1

1

2
i
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and 
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1 1 1 1
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1

2 2 ,
i

t i s i   



 M  (3.3) 

 

respectively. These operators are invariant with re-

spect to the group 2.SU  The operators which define 

the allowed -decay, and hence their matrix ele-

ments, do not depend on the orbital coordinates of the 

wave function, i.e., on most of the quantum numbers 

of this nuclear wave function. For this reason, it is  

appropriate to use the approximations of the nuclear 

supermultiplet model [20 - 22, 36]. 

The matrix elements of the operator given by 

Eq. (3.2) depend only on the total isotopic spin T  and 

its z-component TM  of the ground state wave func-

tion and it is easy to prove that 
 

  '
1

2
2 ' ' .| | 1 T

T

TM
T T T T T M

TM T M T T M M


     


S S  

(3.4) 

It is noted that the matrix elements in Eq. (3.4) are di-

agonal with respect to all the other quantum numbers.  

The operator 1 1
1  M  represents the spin and the 

isospin coordinates of the nucleons, and can be writ-

ten in an irreducible form relative to the conversions 

of the symmetric group AS  in the following form 
 

 1 1 1  1 

1  1   2 2  q q

q

  
 

 



M S H , (3.5) 

 

where 1  1 
1    and  q q
 
 S H  are irreducible tensors of the 

groups 2   nd  ASU a S , respectively,   takes the IRs 

 A  and  A 1,1 , and q  is its projection. To calcu-

late the matrix elements of the operator (3.5), we  

apply the Wigner - Eckart theorem for the two groups 

simultaneously.  

In the present calculation of the ft-value, we are 

concerned with the following transition 
 

6He    60 ; 1 Li 1 ; 0 .J T J T           

 

The method of calculating the required matrix el-

ements of the quantity ft can be found in [14, 21]. 
 

4. The nuclear moment of inertia 

and the quadrupole moment 
 

According to the concept of the single-particle 

Schrödinger fluid for axially symmetric deformed nu-

clei, the cranking model, and the rigid-body model 

moments of inertia of a given nucleus are calculated 

by the following expressions [28 - 30] 
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(4.2) 
 

where q  is the anisotropy of the configuration, which 

is defined by 
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and E  is the total energy of the oscillator 
 

  
1

1 .
2

y y x z z

occ

E n n n
  
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  
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In Eqs. (4.3) and (4.4) ,  and  x y zn n n  are the state 

quantum numbers of the oscillator. Also, in Eqs. (4.1) 

and (4.2)   is a measure of the deformation of the 

potential and is defined by 
 

 .
y z

y z

 
 

 
 (4.5)  

 

In the above equations, we use the well-known 

Nilsson angular frequencies [42] 



GROUND AND EXCITED STATE CHARACTERISTICS 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2021  Т. 22  № 1 23 

 2 2 2
0

2
1 ,
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 2 2
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4
1 ,

3
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 
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 
 (4.7) 

 

where   is a deformation parameter related to the 

well-known deformation parameter  by 
 

 
3 5

.
2 4

  


 (4.8) 

 

The frequency 0  in Eqs. (4.6) and (4.7) is given in 

terms of the non-deformed frequency 0
0  by [42] 
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 (4.9) 

 

The value of the non-deformed oscillator parame-

ter 0
0  depends on the mass number A,  the number 

of neutrons N , and the number of protons Z . An  

approximate formula for 0
0  is given by [37] 
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3
0
0 2

38.6A
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Z



 
 
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In this case of axially symmetric deformed nuclei, 

the magnetic dipole moment can be calculated using 

the same technique given by Nilsson [42]. 

Furthermore, assuming a charge distribution in ac-

cordance with the Thomas - Fermi statistical model, 

one obtains, for the case of axially symmetric de-

formed nuclei, the intrinsic quadrupole moment [42] 
 

 2
0

2
0.8 1 ,

3
Q ZeR

 
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 
 (4.11) 

 

where Z  is the number of protons and R  is the radius 

of charge of the nucleus. In (4.11) 0Q  is calculated to 

the second order in the deformation parameter  . The 

relation between the measured quadrupole moment, 

denoted by ,SQ  and 0Q  is given by 
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2
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3 1
,

1 2 3
S

K I I
Q Q

I I
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

 
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where I  is the total spin of the nuclear state and K  is 

its component along the body-fixed z-axis. The  

intrinsic quadrupole moment is then calculated for a 

nucleus with an axis of symmetry by calculating the 

charge radius using the single-particle wave functions, 

as a function of the deformation parameter ,  and 

hence the measured quadrupole moment is obtained. 
 

5. The nuclear moment of inertia 
and the quadrupole moment 

when the nucleus does not have an axis 
of symmetry 

 

Consider a nucleon that is moving in a deformed 

nuclear field whose Hamiltonian is given by [38] 
 

2
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m
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     2 2
0 2,2 2, 2

2
,   , ,

2
m r sin Y Y           (5.1) 

 

where  ,Λ ,lY    are the spherical harmonics,   is 

the deformation parameter and   is the non-axiality  

parameter. The constants C  and D  in equation 

Eq. (5.1) are given by [38, 42] 
 

 0
0,2C        0

0,D     (5.2) 
 

where   takes values in the interval 0.05 0.08    

and   depends on the number of quanta of excitation 

N  as given by Nilsson [42]. The Schrödinger equa-

tion representing the motion of a single nucleon in the 

non-axially deformed nuclear field, whose Hamilto-

nian operator is given by Eq. (5.1), can be solved [38] 

by: (i) applying the variational method for the fifth 

term in Eq. (5.1) with respect to the eigenfunctions of 

the first four terms ΛΣ ,Nl  and then (ii) applying the 

stationary non-degenerate perturbation method for 

the last term in (5.1) with respect to the eigenfunc-

tions ΩN 
 which results from the application of the 

variational method .  As a result, the single-particle 

energy eigenvalues and eigenfunctions Ω


 of a nu-

cleon in a deformed nuclear field can be calculated 

for every level, with the given value of the z-compo-

nent of the total angular momentum Ω and parity   

as functions of the potential parameters ,  and ,  the 

deformation parameter ,  and the non-axiality  

parameter .  

Hence, the moment of inertia of a deformed  
nucleus that does not have an axis of symmetry is then 
given by applying the superfluidity model [38, 39] 

 

  
2 2

2
. .

,

Δ
1 ,

x i k
s f

i k i ki k

i J k

E E E E

      
  

   
I  

(5.3) 
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where i  are the eigenvalues of the self-consistent 

field, the eigenvalues of the Hamiltonian operator 

(5.1),   is the chemical potential and the energy of 

elementary excitations of the nucleus, ,iE  is given by 
 

  
2 2Δ .i iE      (5.4) 

 

In Eq. (5.4), Δ  is the energy gap and   is the chem-

ical potential given by [38] 
 

 
 

,
2 2

1 N ,

Δ

i
p n

i
i

 
  

  
   
 

  (5.5) 

 

where the summation, here, runs overall distinct neu-

tron (or proton) energies and ,N p n  is the number of 

protons or neutrons inside the nucleus. 

In this case of non-axial deformed nuclei, the in-

trinsic quadrupole moment of a nucleus, consisting of 

Z  protons, is given by 
 

 0

1

,
Z

i

i

Q Q


  (5.6) 

 

where the single-particle operator iQ  is given by 
 

    
2

2
Ω 2,0

16
Ψ , .

5

i
i i i iQ e r Y d


      (5.7) 

 

Carrying out the integration in Eq. (5.7) with  

respect to the wave functions Ω


, one then obtains 

 

2
2,0

,
5

.
16

Λ Λi i
i k m k k m m k k m m

k m

Q e C C N l r N l l Y l


   

(5.8) 
 

Filling the single-particle wave functions Ω
 for 

the nucleus ⁶Li in its ground-state with two protons 

and two neutrons in the 0s-level and one proton and 

one neutron in the 1p-level, it is then possible to cal-

culate the quadrupole moment by calculating the nec-

essary matrix elements of Eq. (5.8) and evaluating the 

expansion coefficients i
kC  of the functions Ω


 in 

terms of the functions ΛΣ .Nl  

 

6. Results and discussions 
 

In the present paper, we applied the TISM with a 

large number of bases belonging to the number of 

quanta of excitation 2 11N   to calculate the B. E., 

the root-mean-square radius, and the magnetic dipole 

moment of the nucleus 6Li. Furthermore, the spec-

trum of the nuclei with A = 6 and the ft-value of the 

allowed transition: 6He  0 ; 1  J T         6Li 

 1 ;   0J T 
    are also calculated. In the calcula-

tions, which have been carried out in this part, we 

used two nucleon-nucleon interactions, namely: the 

GPT [32] and the Av8' [33, 34] together with the Ur-

bana IX three-body interaction [34, 35]. To our 

knowledge, no one reached this large basis TISM cal-

culations for the nuclei with A = 6 before.  

In Fig. 1 we present the variation of the B. E. of 
6Li, in MeV, with respect to the oscillator parameter 

  by using the GPT and the Av8' two-body poten-

tials and the improved values obtained by adding the 

Urbana UIX three-body potential. From this figure, 

we notice that all the potentials produced maximum 

values (minimum ground-state energy) as should be 

expected from the behavior of the TISM. Also, the 

results obtained by using the Av8' potential together 

with the UIX potential are better than those obtained 

by using the other potentials. Moreover, the variation 

of the root-mean-square radius (R) of 6Li with respect 

to the oscillator parameter   is given in Fig. 2, for 

the three potentials. It is seen from this figure also that 

all the potentials have minimum values and that the 

Av8' potential together with the UIX potential gave 

the best values of R among the other potentials. 
 

                                    B. E., MeV 

 
                                                                                                         ħ, MeV 

 

Fig. 1. Variation of the B. E. of 6Li with ħ for the used potentials. 
(See color Figure on the journal website.) 
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                                    R, fm 

 
                                                                                                  ħ, MeV 

 

Fig. 2. Variation of the root-mean-square radius of 6Li with ħ for the used potentials. 

(See color Figure on the journal website.) 
 

In Table 1, we present the values of the B. E., the 

root-mean-square radius (R), the magnetic dipole  

moment () of the nucleus ⁶Li, and the ft-value of  

the allowed transition: 6He  0 ; 1  J T       

  6Li  1 ;  0J T 
    by using the three poten-

tials. The corresponding experimental values are 

given in this table. Also, in Table 1 we present the 

values of  , for which the spectra of the nuclei with 

A = 6 are in good agreement with the corresponding 

experimental values. Previous results obtained by us-

ing the Doma-potential (D1 [16]) with basis-func-

tions of the TISM belonging to 6N   [16] are also 

given. 

 

Table 1. B. E., root-mean-square radius, and magnetic dipole moment 

of ⁶Li and the ft-value of the allowed -decay 
 

Case B. E., MeV R, fm , N.M. ft-value, s ħ, MeV 

GPT 27.634 2.491 0.836 886.94 14 

Av8' 29.744 2.361 0.839 885.17 15 

GPT + UIX 30.323 2.392 0.828 881.19 15 

Av8' + UIX  30.914 2.351 0.832 880.22 16 

TISM + D1 [16] 24.572 2.147 0.782  20 

Exp. [36] 32.0 2.32 0.822 862  17  
 

The spectra of the even and the odd parity states 

of the nuclei with A = 6 are given in Table 2, by using 

the three potentials. The corresponding experimental 

values [44] and previous values obtained by using the 

NCSM with the CD-Bonn potential [45] are also 

given in Table 2. 
 

Table 2. The spectra of the even- and the odd-parity states of the nuclei with A = 6. 

The energies are in MeV 
 

,J T
 Exp. [44] GPT Av8' GPT + UIX Av8' + UIX 

NCSM 

CD-Bonn [45] 

3 ,0
 2.186 2.231 2.444 2.204 2.411 2.841 

0 ,1
 3.563 3.397 3.101 3.552 3.397 3.330 

2 ,0
 4.310 4.373 4.566 4.355 4.309 4.610 

12 ,1  5.366 5.221 5.494 5.288 5.398 5.975 

21 ,0  5.652 6.421 6.533 6.192 5.838 6.544 

22 ,1  6.633 6.883 7.707 6.771 6.999 9.199 

2 ,0
 6.941 7.222 8.821 7.148 7.418  

1 ,0
 8.732 8.177 9.542 8.456 8.959  

0 ,0
 9.302 9.166 10.431 9.222 9.676  

1 ,1
  9.452 10.995 9.303 9.872 9.937 
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From Table 1 we see that the resulting values of 

the B. E. and the root-mean-square radius of ⁶Li are 

in good agreement with the corresponding experi-

mental values, especially by adding the three-body  

interaction. Also, the inclusion of states correspond-

ing to the number of quanta of excitations 6 11N   

mainly improved the previous results obtained by  

using the Doma-potential (D1 [16]) with basis-func-

tions of the TISM belonging to 6N   [16]. 

Furthermore, we notice from Table 2 that the  
obtained spectra of the nuclei with A = 6, for the even- 
and the odd-parity states, are in good agreement with 
the corresponding experimental one, especially in the 
case of the GPT + UIX potentials.  

The calculated values of the magnetic dipole mo-

ment of the nucleus 6Li, in N.M., by applying the 

three nuclear models, corresponding to the spherical, 

the axially symmetric, and the nonaxial deformed 

cases are given in Table 3. 
 

Table 3. The magnetic dipole moment of ⁶Li 
 

Case   
0
0 ,  MeV , N.M. 

Spherical (GPT + UIX) 00  0.0 14 0.828 

Spherical (Av8'+UIX) 00  0.0 15 0.832 

Axially Symmetric 00  0.26 9.594 0.826 

Asymmetric 030  0.28 9.594 0.939 

Experimental  0.20 - 0.26  0.822 [36] 
 

The calculated values of the electric quadrupole  
 

moment of 6Li, in  m barnse , are given in Table 4 for 

the axially symmetric case ( 00  ) and for the non-

axial case corresponding to 0.30   
 

Table 4. The electric quadrupole moment of ⁶Li 
 

Case   
0
0 ,  MeV ,SQ  e m barns ,expQ  e m barns [46] 

Symmetric 00  0.06 9.594 0.078 0.083 

Asymmetric 030  0.12 9.594 0.074 0.083 
 

In Table 5, we present the calculated values of the 

reciprocal moment of inertia of the nucleus ⁶Li by  
 

using the concept of the single-particle Schrödinger 

fluid, for the axially symmetric case, for both cran-

king and the rigid-body models, and the nuclear  

superfluidity model for the non-axial case. Also, we 

present in Table 5 the corresponding experimental 

value. The values of the deformation parameter , the 

non-axiality parameter , and the oscillator parameter 
0
0  are also given in Table 5. 

 

Table 5. Reciprocal moment of inertia of ⁶Li 
 

Case   
0
0 ,  MeV 

2

  ,
2I

 keV 

Cranking 00  0.27 9.594 493.44 

Rigid body 00  0.24 9.594 716.04 

Superfluidity 025  0.28 9.594 548.58 

Experimental  0.20 - 0.26  500.0 [47] 
 

In the case of the superfluidity model, the best val-
ues of the model parameters are: 0.08  , 

18.121   MeV, and Δ 0.833  MeV, for the poten-

tial parameter, the chemical potential, and the energy 
gap, respectively. These parameters gave a reciprocal 
moment of inertia of ⁶Li in better agreement with the 
corresponding experimental value. 

It is seen from Table 5 that the calculated value of 

the cranking-model reciprocal moment of inertia is in 

better agreement with the corresponding experi-

mental value rather than the other values. The disa-

greement between the value of the rigid-body recip-

rocal moment of inertia and the corresponding exper-

imental value is because the pairing correlation is not 

taken into concern in this model [26, 30]. Moreover, 

it is seen from Table 4 that the calculated value of the 

quadrupole moment of ⁶Li in the case 
00  , the  

axially symmetric case, is in better agreement with 

the corresponding experimental value rather than that 

of the case 030 .    



GROUND AND EXCITED STATE CHARACTERISTICS 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2021  Т. 22  № 1 27 

7. Conclusions 
 

In the first part of this paper, we considered the 

nuclei with mass number A = 6 as spherical nuclei 

and applied the TISM with the number of quanta of 

excitation 2 11N  . In the calculations which have 

been carried out in this case, we used two nucleon-

nucleon potentials together with a three-nucleon  

potential. Accordingly, we calculated the B. E.,  

the root-mean-square radius, and the magnetic  

dipole moment. Also, the spectra of the nuclei  

with A = 6 are calculated. Moreover, the ft-value  

of the allowed transition: 6He  0 ; 1J T       

 6Li 1 ;   0J T 
    is also calculated. In the sec-

ond part of this paper, we applied the concept of the 

single-particle Schrödinger fluid for axially symmet-

ric deformed nuclei to calculate the moment of inertia 

of ⁶Li. Also, we calculated the magnetic dipole mo-

ment and the electric quadrupole moment of the nu-

cleus ⁶Li in this case of axially symmetric shape. Fi-

nally, in the third part of our investigation, we consid-

ered the nucleus 6Li as deformed and does not have 

an axis of symmetry. Accordingly, we applied an  

anisotropic single-particle oscillator to represent the 

average potential field of the nucleons inside the  

nucleus and applied the variational method followed 

by the stationary nondegenerate perturbation method 

to calculate the single-particle energy eigenvalues 

and the eigenfunctions of the nucleon inside this nu-

cleus. Accordingly, we calculated the magnetic di-

pole moment and the electric quadrupole moment of 
6Li in this case. Also, in this case, we applied the nu-

clear superfluidity model to calculate the moment of 

inertia. This study has identified that all the applied 

models and methods are appropriate and correctly de-

scribe the nuclei with mass number A = 6. The second 

major finding was that the inclusion of states corre-

sponding to the number of quanta of excitations 

6 11N   mainly improved the previous results ob-

tained by using the Doma-potential (D1 [16]) with ba-

sis-functions of the TISM belonging to 6N   [16]. 

Furthermore, the inclusion of the UIX- three-nucleon 

interaction mainly improves the results of the ground-

state characteristics of the nucleus 6Li, as well as the 

spectra of the nuclei with mass number A = 6. More-

over, in the case where the nucleus is assumed to be 

deformed and has an axis of symmetry, the obtained 

results concerning the moment of inertia, the mag-

netic dipole moment, and the electric quadrupole mo-

ment, are in better agreement with the corresponding 

experimental values. 
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ХАРАКТЕРИСТИКИ ОСНОВНОГО ТА ЗБУДЖЕНИХ СТАНІВ 
ЯДЕР З A = 6  

 

Енергія зв’язку, середньоквадратичний радіус, магнітний дипольний момент, електричний квадрупольний мо-

мент та момент інерції ядра 6Li були обчислені за допомогою різних моделей. Трансляційно-інваріантна оболон-

кова модель була застосована для обчислення енергії зв’язку, середньоквадратичного радіуса та магнітного ди-

польного моменту з використанням дво- та тричастинкових взаємодій. Також спектри ядер з A = 6 були обчислені 
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в трансляційно-інваріантній оболонковій моделі. До того ж було розраховане значення ft для дозволеного пере-

ходу 6He   60 1 Li 1 ;   0;J T J T         . Для розрахунку моменту інерції 6Li була застосована конце-

пція одночастинкової рідини Шредінгера для аксіально-симетричних деформованих ядер. Також було розрахо-

вано магнітний дипольний момент та електричний квадрупольний момент ядра 6Li для цього випадку аксіально-

симетричної форми. Крім того, модель ядерної надплинності була застосована для обчислення моменту інерції 
6Li, базуючись на одночастинковому деформованому анізотропному осциляторному потенціалі з доданим спін-

орбітальним членом та членом, пропорційним квадрату орбітального моменту імпульсу, як зазвичай у цьому 

випадку. Отримані одночастинкові хвильові функції були використані для обчислення магнітного дипольного 

моменту та електричного квадрупольного моменту 6Li. 

Ключові слова: трансляційно-інваріантна оболонкова модель, ядра з A = 6, енергія зв'язку, спектр, середньок-

вадратичний радіус, магнітний дипольний момент, квадрупольний момент, ft-значення, одночастинкова рідина 

Шредінгера, модель ядерної надплинності. 
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