ЯДЕРНА ФІЗИКА NUCLEAR PHYSICS УДК 539.164 https://doi.org/10.15407/jnpae2021.02.121 ### V. I. Tretyak* Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine *Corresponding author: tretyak@kinr.kiev.ua # SPONTANEOUS DOUBLE ALPHA DECAY: FIRST EXPERIMENTAL LIMIT AND PROSPECTS OF INVESTIGATION Nuclear decays with simultaneous emission of two alpha particles are energetically possible for a number of nuclides. Prospects of searching for such kind of decay for nuclides present in the natural isotopic composition of elements are discussed here. The first experimental limit on half-life for 2α decay is set for 209 Bi as $T_{1/2} > 2.9 \cdot 10^{20}$ y at 90 % C.L., using the data of work [P. de Marcillac et al. Nature 422 (2003) 876]. Theoretical $T_{1/2}$ estimations for the process are also given. Using these values, which are on the level of 10^{33} y or more, one can conclude that the prospects of experimental observation of 2α decay are very pessimistic. Keywords: double alpha decay, low background experiments, theoretical and experimental half-lives. #### 1. Introduction We know today several kinds of decay of atomic nuclei in which two particles of the same nature are emitted simultaneously. Double beta (2β) decay, in which two electrons are emitted together with two antineutrinos, was predicted in 1935 by Goeppert-Mayer [1] and is registered to-date for 14 nuclides [2, 3]. Neutrinoless mode of this decay, in which only two electrons are emitted without antineutrinos, was first discussed by Furry in 1939 [4]. It is forbidden in the Standard Model (SM) of particles because it violates the lepton number by two units, but is predicted by many theories which consider the SM as a low-energy approximation; it is not observed yet but is actively searched for in many worldwide experiments [3, 5]. Deexcitation of an excited nuclear state with emission of two gammas, 2γ decay, was considered by Goeppert-Mayer in 1929 [6] (see also [7]). It was observed in 1963 for nuclei with $0^+ \rightarrow 0^+$ transitions, like 16 O, 40 Ca and 90 Zr, where emission of single γ is forbidden, and allowed are emissions of a conversion electron, or electron-positron pair, or two gammas [8]. In 2015, it was also observed at the first time for 137 Ba, where emission of a single γ is allowed, as a competitive mode on the level of 10^{-6} [9]. Also, nuclear decays with simultaneous emission of two protons (2p) and two neutrons (2n) are known; see [10] and Refs. therein. However, possibility of nuclear decay with emission of two alpha particles at the same time (2α decay) was not analyzed on the same level of attention as the 2β , 2γ , 2p and 2n radioactivities. To our knowledge, it was discussed at the first time by Novikov in [11], with estimation of half-lives for few nuclides in [12]. It was considered also in theoretical article by Poenaru & Ivascu [13] (see also [14]). There were no experimental searches for such processes yet. Here we analyze possible experimental investigations of nuclear 2α decay (Section 2), give theoretical estimations of half-lives for a number of nuclides present in the natural isotopic composition of elements (Section 3) and set the first experimental limit for such a process (Section 4). It should be noted that in interactions of nuclei with high-energy particles the defragmentation of nuclei with emission of few α particles is possible [15] but we are interested here in the spontaneous 2α decay. # 2. Possible experimental approaches to search for 2α decay Analyzing atomic masses from the last atomic mass evaluation [16], one can see that 2α decay is energetically possible for many nuclei (for 1459 isotopes from 3436 listed in [16]). Energy releases $Q_{2\alpha}$ can reach quite big values (maximal value is 22.7 MeV for ²⁷⁶Cn) that, supposing an exponential dependence of half-life $T_{1/2}$ on $Q_{2\alpha}$ similar to single alpha decay, increases probability of this process. However, many of such nuclides are unstable with short half-lives respective to their main decay branch; they should be created at accelerators or extracted from fission products at nuclear reactors. It would be quite difficult to see a rare 2α process on the big radioactive α and β backgrounds. Instead, we will concentrate here on techniques which are typical in searches for rare nuclear decays, like 2β [2, 3, 5], single α and β [17], dark matter [18, 19], or in neutrino measurements [20]. In such an approach, massive (from ~0.1 kg to ~1 t) samples consisting of nuclides present in the natural isotopic composition of elements [21] are measured, usually in deep underground laboratories to decrease the background from cosmic muons. © V. I. Tretyak, 2021 Detectors, massive shieldings and all surrounding details are built from super-pure materials to suppress natural radioactivity that is necessary to see a small useful signal. Nuclides present in the natural composition of elements which are potentially unstable in relation to 2α decay are listed in Table. ## Naturally abundant 80 nuclides candidates for 2α decay | Mother | δ, % | Q _{2α} , keV | Daughter isotope | Additional possible α and β decay | Theor. T _{1/2} , y | |-------------------|--------|-----------------------|------------------------------|--|-----------------------------| | isotope | [21] | [16] | $(T_{1/2})$ [22] | modes of mother isotope | [23] | | | [] | [-~] | (1/2/ [] | | | | ¹⁴⁴ Nd | 23.798 | 289.1 ± 1.4 | ¹³⁶ Ba (stable) | α (144Nd \rightarrow 140Ce \rightarrow 136Ba) | | | ¹⁴⁵ Nd | 8.293 | 1439.5 ± 1.4 | ¹³⁷ Ba (stable) | $\alpha (^{145}\text{Nd} \rightarrow ^{141}\text{Ce} \rightarrow ^{137}\text{Ba})$ | | | ¹⁴⁶ Nd | 17.189 | 2485.9 ± 1.4 | ¹³⁸ Ba (stable) | $2\beta^-$, α (¹⁴⁶ Nd \rightarrow ¹⁴² Ce \rightarrow ¹³⁸ Ba) | | | ¹⁴⁸ Nd | 5.756 | 1011.5 ± 8.2 | ¹⁴⁰ Ba (12.7 d) | $2\beta^-$, α (¹⁴⁸ Nd \rightarrow ¹⁴⁴ Ce \rightarrow ¹⁴⁰ Ba) | | | | | | , | | | | ¹⁴⁷ Sm | 15.00 | 2831.7 ± 7.5 | ¹³⁹ Ce (137.6 d) | $\alpha (^{147}\text{Sm} \rightarrow ^{143}\text{Nd} \rightarrow ^{139}\text{Ce})$ | | | ¹⁴⁸ Sm | 11.25 | 3890.0 ± 2.1 | ¹⁴⁰ Ce (stable) | α (¹⁴⁸ Sm \rightarrow ¹⁴⁴ Nd \rightarrow ¹⁴⁰ Ce) | 1.3.1058 | | ¹⁴⁹ Sm | 13.82 | 3447.3 ± 2.1 | ¹⁴¹ Ce (32.5 d) | $\alpha (^{149}\text{Sm} \rightarrow ^{145}\text{Nd} \rightarrow ^{141}\text{Ce})$ | 4.7·10 ⁶⁶ | | ¹⁵⁰ Sm | 7.37 | 2632.2 ± 2.8 | ¹⁴² Ce (stable) | α (150Sm \rightarrow 146Nd \rightarrow 142Ce) | | | ¹⁵² Sm | 26.74 | 819.4 ± 3.1 | ¹⁴⁴ Ce (284.9 d) | $\alpha (^{152}\text{Sm} \rightarrow ^{148}\text{Nd} \rightarrow ^{144}\text{Ce})$ | | | | | | , | | | | ¹⁵¹ Eu | 47.81 | 3565.6 ± 2.3 | ¹⁴³ Pr (13.6 d) | $\alpha (^{151}\text{Eu} \rightarrow ^{147}\text{Pm} \rightarrow ^{143}\text{Pr})$ | 1.5·10 ⁶⁶ | | ¹⁵³ Eu | 52.191 | 1408.9 ± 7.3 | ¹⁴⁵ Pr (6.0 h) | $\alpha (^{153}\text{Eu} \rightarrow ^{149}\text{Pm} \rightarrow ^{145}\text{Pr})$ | | | | | | | | | | ¹⁵² Gd | 0.20 | 4191.2 ± 1.8 | ¹⁴⁴ Nd (2.3e15 y) | 2ε , α ($^{152}Gd \rightarrow {}^{148}Sm \rightarrow {}^{144}Nd$) | $4.1 \cdot 10^{56}$ | | ¹⁵⁴ Gd | 2.18 | 2370.1 ± 1.8 | ¹⁴⁶ Nd (stable) | $\alpha (^{154}\text{Gd} \rightarrow ^{150}\text{Sm} \rightarrow ^{146}\text{Nd})$ | | | ¹⁵⁵ Gd | 14.80 | 1227.0 ± 1.8 | ¹⁴⁷ Nd (11.0 d) | $\alpha (^{155}\text{Gd} \rightarrow ^{151}\text{Sm} \rightarrow ^{147}\text{Nd})$ | | | ¹⁵⁶ Gd | 20.47 | 23.3 ± 2.4 | ¹⁴⁸ Nd (stable) | $\alpha (^{156}\text{Gd} \rightarrow ^{152}\text{Sm} \rightarrow ^{148}\text{Nd})$ | | | 121 | | | 110 | | | | ¹⁵⁶ Dy | 0.056 | 3957.5 ± 1.8 | ¹⁴⁸ Sm (7.0e15 y) | $\varepsilon\beta^+, \alpha (^{156}\text{Dy} \rightarrow ^{152}\text{Gd} \rightarrow ^{148}\text{Sm})$ | $1.9 \cdot 10^{64}$ | | ¹⁵⁸ Dy | 0.095 | 1794.0 ± 2.7 | ¹⁵⁰ Sm (stable) | 2ε , α (158Dy \rightarrow 154Gd \rightarrow 150Sm) | | | ¹⁶⁰ Dy | 2.329 | 240.0 ± 1.4 | ¹⁵² Sm (stable) | $\alpha (^{160}\text{Dy} \rightarrow ^{156}\text{Gd} \nrightarrow ^{152}\text{Sm})$ | | | 1.62 | | | 154 | | | | ¹⁶² Er | 0.139 | 2521.6 ± 1.5 | 154Gd (stable) | $\varepsilon\beta^+, \alpha (^{162}\text{Er} \to {}^{158}\text{Dy} \to {}^{154}\text{Gd})$ | | | ¹⁶⁴ Er | 1.601 | 1742.2 ± 1.4 | ¹⁵⁶ Gd (stable) | 2ε , α ($^{164}\text{Er} \rightarrow ^{160}\text{Dy} \rightarrow ^{156}\text{Gd}$) | | | ¹⁶⁶ Er | 33.503 | 913.7 ± 1.7 | ¹⁵⁸ Gd (stable) | $\alpha (^{166}\text{Er} \rightarrow ^{162}\text{Dy} \rightarrow ^{158}\text{Gd})$ | | | ¹⁶⁷ Er | 22.869 | 420.4 ± 1.7 | ¹⁵⁹ Gd (18.5 h) | α (¹⁶⁷ Er \rightarrow ¹⁶³ Dy \rightarrow ¹⁵⁹ Gd) | | | ¹⁶⁸ Er | 26.978 | 100.7 ± 1.7 | ¹⁶⁰ Gd (stable) | $\alpha (^{168}\text{Er} \rightarrow ^{164}\text{Dy} \nrightarrow ^{160}\text{Gd})$ | | | | | | | | | | ¹⁶⁹ Tm | 100 | 1336.5 ± 1.6 | ¹⁶¹ Tb (6.9 d) | $\alpha (^{169}\text{Tm} \rightarrow ^{165}\text{Ho} \rightarrow ^{161}\text{Tb})$ | | | 168 - 71 | 0.122 | 2011 0 1 1 1 | 160p (, 11) | 01 (1687) 1647 1607 | | | ¹⁶⁸ Yb | 0.123 | 3241.0 ± 1.4 | ¹⁶⁰ Dy (stable) | $\epsilon\beta^+, \alpha (^{168}Yb \rightarrow ^{164}Er \rightarrow ^{160}Dy)$ | | | ¹⁷⁰ Yb | 2.982 | 2567.7 ± 0.8 | ¹⁶² Dy (stable) | $\alpha (^{170}\text{Yb} \rightarrow ^{166}\text{Er} \rightarrow ^{162}\text{Dy})$ | | | ¹⁷¹ Yb | 14.086 | 2224.5 ± 0.8 | ¹⁶³ Dy (stable) | $\alpha (^{171}\text{Yb} \rightarrow ^{167}\text{Er} \rightarrow ^{163}\text{Dy})$ | | | ¹⁷² Yb | 21.686 | 1862.7 ± 0.8 | ¹⁶⁴ Dy (stable) | $\alpha (^{172}\text{Yb} \rightarrow ^{168}\text{Er} \rightarrow ^{164}\text{Dy})$ | | | ¹⁷³ Yb | 16.103 | 1211.6 ± 0.8 | ¹⁶⁵ Dy (2.3 h) | $\alpha (^{173}\text{Yb} \rightarrow ^{169}\text{Er} \rightarrow ^{165}\text{Dy})$ | | | ¹⁷⁴ Yb | 32.025 | 790.4 ± 0.9 | ¹⁶⁶ Dy (81.6 h) | $\alpha (^{174}\text{Yb} \rightarrow ^{170}\text{Er} \rightarrow ^{166}\text{Dy})$ | | | ¹⁷⁶ Yb | 12.995 | 218 ± 140 | ¹⁶⁸ Dy (8.7 m) | $2\beta^-, \alpha (^{176}Yb \rightarrow ^{172}Er \nrightarrow ^{168}Dy)$ | | | ¹⁷⁵ Lu | 07.401 | 2265.2 + 5.4 | ¹⁶⁷ Ho (3.1 h) | o. (175) - 171m - 167m | | | 176Lu | 97.401 | 2265.2 ± 5.4 | ` ' | $\alpha (^{175}\text{Lu} \rightarrow ^{171}\text{Tm} \rightarrow ^{167}\text{Ho})$ | | | Lu | 2.599 | 1829 ± 30 | ¹⁶⁸ Ho (3.0 m) | $\alpha (^{176}\text{Lu} \rightarrow ^{172}\text{Tm} \rightarrow ^{168}\text{Ho})$ | | | ¹⁷⁴ Hf | 0.16 | 1231 7 ± 2 5 | ¹⁶⁶ Er (stable) | $\epsilon \beta^+, \alpha (^{174}\text{Hf} \rightarrow ^{170}\text{Yb} \rightarrow ^{166}\text{Er})$ | 8.2.1069 | | ¹⁷⁶ Hf | 5.26 | 4231.7 ± 2.5 | 168Er (stable) | $\alpha (^{176}\text{Hf} \rightarrow ^{172}\text{Yb} \rightarrow ^{168}\text{Er})$ | 0.2.10 | | ¹⁷⁷ Hf | 18.60 | 3565.0 ± 1.9 | ¹⁶⁹ Er (9.4 d) | $\alpha (^{177}\text{Hf} \rightarrow ^{173}\text{Yb} \rightarrow ^{169}\text{Er})$ | $2.4 \cdot 10^{93}$ | | ¹⁷⁸ Hf | | 3192.7 ± 1.8 | 170Er (stable) | $\alpha (^{17}\text{Hf} \rightarrow ^{17}\text{Yb} \rightarrow ^{18}\text{Er})$ $\alpha (^{178}\text{Hf} \rightarrow ^{174}\text{Yb} \rightarrow ^{170}\text{Er})$ | 2.4.10 | | ¹⁷⁹ Hf | 27.28 | 2823.6 ± 2.1 | ¹⁷¹ Er (7.5 h) | | | | 180Hf | 13.62 | 2406.2 ± 2.1 | | $\alpha (^{179}\text{Hf} \rightarrow ^{175}\text{Yb} \rightarrow ^{171}\text{Er})$ | | | ıHı | 35.08 | 1854.4 ± 4.3 | ¹⁷² Er (49.3 h) | $\alpha (^{180}Hf \rightarrow {}^{176}Yb \rightarrow {}^{172}Er)$ | | # Continuation of the Table | Mother | δ, % | Q _{2α} , keV | Daughter isotope | Additional possible α and β decay | Theor. $T_{1/2}$, y | |--|------------------|---|--|--|---| | isotope | [21] | [16] | $(T_{1/2})$ [22] | modes of mother isotope | [23] | | | | | | | | | ¹⁸⁰ Ta | 0.01201 | 3591.7 ± 5.8 | ¹⁷² Tm (63.6 h) | $\alpha (^{180}\text{Ta} \rightarrow ^{176}\text{Lu} \rightarrow ^{172}\text{Tm})$ | $1.2 \cdot 10^{85}$ | | ¹⁸¹ Ta | 99.98799 | 2967.9 ± 4.6 | ¹⁷³ Tm (8.2 h) | $\alpha (^{181}\text{Ta} \rightarrow ^{177}\text{Lu} \rightarrow ^{173}\text{Tm})$ | | | ¹⁸⁰ W | 0.12 | 47(0 E ± 1 A | ¹⁷² Yb (stable) | 2 c. (180xy) 176ttc) 172xyt) | 1 4 1064 | | 182W | 26.50 | $\frac{4769.5 \pm 1.4}{3848.6 \pm 0.7}$ | 174Yb (stable) | $2\varepsilon, \alpha (^{180}W \rightarrow ^{176}Hf \rightarrow ^{172}Yb)$ $\alpha (^{182}W \rightarrow ^{178}Hf \rightarrow ^{174}Yb)$ | $1.4 \cdot 10^{64}$ | | 183 W | 14.31 | 3480.1 ± 0.7 | ¹⁷⁵ Yb (4.2 d) | $\alpha (^{183}W \rightarrow ^{179}Hf \rightarrow ^{175}Yb)$ | 6.4·10 ⁸⁹ | | 184 W | 30.64 | 2936.1 ± 0.7 | ¹⁷⁶ Yb (stable) | $\alpha (\stackrel{\text{W}}{\rightarrow} \stackrel{\text{III}}{\rightarrow} \stackrel{\text{Ib}}{\rightarrow} \stackrel{\text{Ib}}{\rightarrow} $ | 0.4.10 | | 186 W | 28.43 | $\frac{2930.1 \pm 0.7}{2337 \pm 10}$ | ¹⁷⁸ Yb (74 m) | $2\beta^{-}, \alpha (^{186}W \rightarrow ^{182}Hf \rightarrow ^{178}Yb)$ | | | | 20.13 | 2337 ± 10 | 10 (7 1 111) | $\frac{2p}{\sqrt{n}}$ $\frac{n}{\sqrt{n}}$ $\frac{n}{\sqrt{n}}$ $\frac{n}{\sqrt{n}}$ | | | ¹⁸⁵ Re | 37.40 | 3714.9 ± 1.5 | ¹⁷⁷ Lu (6.7 d) | α (185Re \rightarrow 181Ta \rightarrow 177Lu) | 1.2.1086 | | ¹⁸⁷ Re | 62.60 | 2992.6 ± 5.2 | ¹⁷⁹ Lu (4.6 h) | $\alpha (^{187}\text{Re} \rightarrow ^{183}\text{Ta} \rightarrow ^{179}\text{Lu})$ | $7.9 \cdot 10^{105}$ | | 1840 | 0.02 | | 176110 (, 11) | 0 1840 180 176 176 | 1 1 1057 | | ¹⁸⁴ Os
¹⁸⁶ Os | 0.02 | 5474.0 ± 1.7 | ¹⁷⁶ Hf (stable) | $\epsilon \beta^+, \alpha (^{184}\text{Os} \rightarrow ^{180}\text{W} \rightarrow ^{176}\text{Hf})$ | 1.4·10 ⁵⁷ | | ¹⁸⁷ Os | 1.59 | 4285.5 ± 1.6 | ¹⁷⁸ Hf (stable) | $\alpha (^{186}\text{Os} \rightarrow ^{182}\text{W} \rightarrow ^{178}\text{Hf})$ | $8.0 \cdot 10^{75}$ $6.9 \cdot 10^{73}$ | | 188Os | 1.96
13.24 | 4394.1 ± 1.6 | ¹⁷⁹ Hf (stable) | $\alpha (^{187}\text{Os} \to ^{183}\text{W} \to ^{179}\text{Hf})$
$\alpha (^{188}\text{Os} \to ^{184}\text{W} \to ^{180}\text{Hf})$ | 6.9.10 | | 189Os | 15.24
16.15 | 3792.3 ± 1.6 | ¹⁸¹ Hf (42.4 d) | $\alpha (^{189}\text{Os} \rightarrow ^{185}\text{W} \rightarrow ^{181}\text{Hf})$ $\alpha (^{189}\text{Os} \rightarrow ^{185}\text{W} \rightarrow ^{181}\text{Hf})$ | 4.0·10 ⁹¹ | | 190Os | 26.26 | 3566.3 ± 1.6 2491.9 ± 6.2 | ¹⁸² Hf (9.0e5 y) | $\alpha (^{190}\text{Os} \rightarrow ^{186}\text{W} \rightarrow ^{182}\text{Hf})$ | 4.0.10 | | 192 O s | 40.78 | 2491.9 ± 6.2
767 ± 40 | ¹⁸⁴ Hf (4.1 h) | $\begin{array}{c} \alpha \text{ (*OS} \rightarrow \text{W} \rightarrow \text{HI)} \\ 2\beta^{-}, \alpha \text{ (}^{192}\text{Os} \rightarrow ^{188}\text{W} \rightarrow ^{184}\text{Hf}\text{)} \end{array}$ | | | Os | 40.78 | 707 ± 40 | 111 (4.1 11) | $2p,\alpha$ ($0s \rightarrow w \rightarrow 111$) | | | ¹⁹¹ Ir | 37.3 | 3734.2 ± 1.9 | ¹⁸³ Ta (5.1 d) | α (¹⁹¹ Ir \rightarrow ¹⁸⁷ Re \rightarrow ¹⁸³ Ta) | 2.8.1089 | | ¹⁹³ Ir | 62.7 | 2008 ± 14 | ¹⁸⁵ Ta (49.4 m) | α (193Ir \rightarrow 189Re \rightarrow 185Ta) | | | 100- | | | 192 | 100 100 | | | ¹⁹⁰ Pt | 0.012 | 6089.8 ± 1.0 | ¹⁸² W (stable) | $\epsilon\beta^+, \alpha (^{190}\text{Pt} \rightarrow ^{186}\text{Os} \rightarrow ^{182}\text{W})$ | $2.7 \cdot 10^{52}$ | | ¹⁹² Pt | 0.782 | 4567.1 ± 2.7 | ¹⁸⁴ W (stable) | $\alpha (^{192}\text{Pt} \rightarrow ^{188}\text{Os} \rightarrow ^{184}\text{W})$ | 1.4·10 ⁷⁴ | | ¹⁹⁴ Pt | 32.864 | 2898.6 ± 1.3 | ¹⁸⁶ W (stable) | $\alpha (^{194}\text{Pt} \to ^{190}\text{Os} \to ^{186}\text{W})$ | | | ¹⁹⁵ Pt ¹⁹⁶ Pt | 33.775
25.211 | 2263.3 ± 1.3 | ¹⁸⁷ W (23.7 h)
¹⁸⁸ W (69.4 d) | $\alpha (^{195}\text{Pt} \to ^{191}\text{Os} \to ^{187}\text{W})$ | | | Pt | 23.211 | 1173.5 ± 3.1 | *** W (69.4 d) | $\alpha (^{196}\text{Pt} \rightarrow ^{192}\text{Os} \rightarrow ^{188}\text{W})$ | | | ¹⁹⁷ Au | 100 | 1989.5 ± 8.2 | ¹⁸⁹ Re (24.3 h) | α (197Au \rightarrow 193Ir \rightarrow 189Re) | | | | | | , , , | | | | ¹⁹⁶ Hg | 0.15 | 4461.5 ± 3.0 | ¹⁸⁸ Os (stable) | 2ε , α (¹⁹⁶ Hg \rightarrow ¹⁹² Pt \rightarrow ¹⁸⁸ Os) | $3.4 \cdot 10^{79}$ | | ¹⁹⁸ Hg | 10.04 | 2903.6 ± 0.8 | ¹⁹⁰ Os (stable) | $\alpha (^{198}\text{Hg} \rightarrow ^{194}\text{Pt} \rightarrow ^{190}\text{Os})$ | | | ¹⁹⁹ Hg | 16.94 | 1999.3 ± 0.8 | ¹⁹¹ Os (15.4 d) | $\alpha (^{199}\text{Hg} \rightarrow ^{195}\text{Pt} \rightarrow ^{191}\text{Os})$ | | | ²⁰⁰ Hg | 23.14 | 1529.1 ± 2.4 | ¹⁹² Os (stable) | $\alpha (^{200}\text{Hg} \rightarrow ^{196}\text{Pt} \rightarrow ^{192}\text{Os})$ | | | ²⁰¹ Hg | 13.17 | | ¹⁹³ Os (30.5 h) | $\alpha (^{201}\text{Hg} \rightarrow ^{197}\text{Pt} \rightarrow ^{193}\text{Os})$ | | | ²⁰² Hg | 29.74 | 240.0 ± 2.5 | ¹⁹⁴ Os (6.0 y) | $\alpha (^{202}\text{Hg} \to ^{198}\text{Pt} \to ^{194}\text{Os})$ | | | ²⁰³ Tl | 29.44 | 1081.0 ± 1.8 | ¹⁹⁵ Ir (2.5 h) | α (²⁰³ Tl \rightarrow ¹⁹⁹ Au \rightarrow ¹⁹⁵ Ir) | | | 11 | 27.77 | 1001.0 ± 1.0 | 11 (2.5 11) | W (11 → Au → 11) | | | ²⁰⁴ Pb | 1.4 | 2684.8 ± 1.3 | ¹⁹⁶ Pt (stable) | $\alpha (^{204}\text{Pb} \rightarrow ^{200}\text{Hg} \rightarrow ^{196}\text{Pt})$ | | | ²⁰⁶ Pb | 24.1 | 1268.6 ± 2.4 | ¹⁹⁸ Pt (stable) | α (²⁰⁶ Pb \rightarrow ²⁰² Hg \rightarrow ¹⁹⁶ Pt) | | | ²⁰⁷ Pb | 22.1 | 86.8 ± 2.4 | ¹⁹⁹ Pt (30.8 m) | $\alpha (^{207}\text{Pb} \rightarrow ^{203}\text{Hg} \nrightarrow ^{199}\text{Pt})$ | | | ²⁰⁸ Pb | 52.4 | 0.7 ± 20 | ²⁰⁰ Pt (12.5 h) | $\alpha (^{208}\text{Pb} \rightarrow ^{204}\text{Hg} \nrightarrow ^{200}\text{Pt})$ | | | 2000: | 100 | | 201 4 (2.6 | 2007 20577 201 | 4 0 4 0 112 | | ²⁰⁹ Bi | 100 | 3292.2 ± 3.5 | ²⁰¹ Au (26 m) | $\alpha (^{209}\text{Bi} \rightarrow ^{205}\text{Tl} \rightarrow ^{201}\text{Au})$ | 4.3·10 ¹¹³ | | ²³² Th | 99.98 | 8151.9 ± 9.9 | ²²⁴ Rn (107 m) | $2\beta^-, \alpha$ (²³² Th \rightarrow ²²⁸ Ra \rightarrow ²²⁴ Rn) | 6.3·10 ⁴⁶ | | 111 | 77.70 | 0101.7 ± 7.7 | 107 III) | 2p, w (111 -> Na -> Nil) | 0.5.10 | | ²³¹ Pa* | 100 | 10192.2 ± 2.6 | ²²³ Fr (21.8 m) | α (²³¹ Pa \rightarrow ²²⁷ Ac \rightarrow ²²³ Fr) | $1.5 \cdot 10^{33}$ | | 234 | 0.007: | | 2260 (4.500) | 22477 220 220 | 10.1-07 | | ²³⁴ U | 0.0054 | 9627.4 ± 2.2 | ²²⁶ Ra (1600 y) | $\alpha (^{234}\text{U} \rightarrow ^{230}\text{Th} \rightarrow ^{226}\text{Ra})$ | 6.3·10 ³⁷ | | ²³⁵ U | 0.7204 | 8891.3 ± 2.2 | ²²⁷ Ra (42.2 m) | $\alpha (^{235}\text{U} \rightarrow ^{231}\text{Th} \rightarrow ^{227}\text{Ra})$ | 1.2·10 ⁴³ | | ²³⁸ U | 99.2742 | 7941.6 ± 10.4 | ²³⁰ Ra (93 m) | $\alpha (^{238}\text{U} \rightarrow ^{234}\text{Th} \rightarrow ^{230}\text{Ra})$ | $9.3 \cdot 10^{50}$ | ^{*} While ^{231}Pa is listed in [21] as present in the natural isotopic composition with abundance $\delta=100$ %, in fact, it is unstable nuclide with quite short half-life $T_{1/2}=32760$ y [22]. In Table δ is the natural abundance of the mother isotope [21]. Energy release $Q_{2\alpha}$ is calculated with atomic masses [16]. Half-life $T_{1/2}$ is given for the daughter isotope [22]. If value of $Q_{2\alpha}$ is greater than 3 MeV, it is marked in bold (red); in this case big abundance (if so) and unstable daughter isotope (if so) are also marked in bold (red). In the last column, the theoretical estimation of $T_{1/2}$ is given, calculated with receipt from [23] for 8 Be emission. 2ϵ is for double electron capture, $\epsilon\beta^+$ is for electron capture with positron emission. One can see from the Table that all the 2α candidates also are potentially unstable in relation to single α decay. Intermediate (A–4,Z–2) nuclides always live long enough [22] not to imitate 2α decay in fast chain of two single α decays; and in few cases ($^{144,145}Nd$, ^{160}Dy , $^{167,168}Er$, ^{176}Yb , $^{207,208}Pb$) α decay of the intermediate nuclide is energetically forbidden. Different methods can be used to look for the 2α decay, e.g.: - 1) Detection of nuclear recoils which in case of 2α decay can have energies higher than those in single α decay (depending on the angle between the emitted α 's) [11, 12]; - 2) Si detectors (or some others, e.g. nuclear emulsions) can register two α particles emitted from an external source and measure their energies; however, samples in this case should be very thin that restricts the mass that can be measured; - 3) An external source can be placed on e.g. HPGe detector; if the daughter nuclide is unstable, one can register characteristic γ quanta emitted in its decay. In this case, mass of a sample could be a few kilograms; however, efficiency of HPGe detectors is on the level of only few percents. Other possible origins of the daughter nuclides should be also taken into account (resulting from e.g. cosmogenic production, or due to fission of U/Th present in some amounts in the investigated source); - 4) Very promising is a "source = detector" approach, when a mother nuclide is embedded in a detector itself as its main component (like W isotopes in CdWO₄ or ²⁰⁹Bi in Bi₄Ge₃O₁₂) or as a dopant (like ²⁰³Tl in NaI(Tl)). This approach gives possibility to use detectors with big masses (up to ~1 t) and ensures high efficiency of registration of the 2α process (practically 100 %). Scintillators can be used; however, in this case one cannot expect high-energy resolution (it will be on the level of few tens or hundreds keV). In addition, scintillators have different light yields for β and γ particles comparing to those for α particles of the same energy (quenching effect, see e.g. [24]). Thus, 2α light signal will be quenched and shifted to lower energies, where α and β/γ backgrounds are higher. Instead, scintillating bolometers, devices able to measure simultaneously light and heat signals for the same event (see e.g. [25]), are very promising techniques. A signal in the heat channel is not quenched (thus, one will see 2α signal at $Q_{2\alpha}$ value but not at lower energies). In addition, energy resolution in the heat channel is on the level of few keV. # 3. Theoretical estimation of $T_{1/2}$ for 2α decay Half-lives for 148 Sm, 152 Gd, 156 Dy, 190 Pt and 234 U were estimated in [12]. There is a good agreement between the values of [12] and results obtained in this work (within 1 – 2 orders of magnitude, if to take also into account difference in $Q_{2\alpha}$ values known in 1986 and the current $Q_{2\alpha}$'s [16]). Calculations of 2α decay half-lives for some nuclei in framework of the superasymmetric fission model were performed in [13]. The results are presented in table [13, 14], and also in graphical form as a logarithm of ratio of probability to emit two α 's to that for single α emission. For nuclides presented in Table, results are absent. To estimate the half-life values for 2α emission, we use here semi-empirical formulae for cluster decays developed in [23] and applied for emission of 8Be nucleus. As it is known, 8Be is highly unstable decaying to two α 's with $T_{1/2} \sim 10^{-16}$ s and $Q_\alpha = 91.8$ keV [22]. Thus, the energy releases in 2α decay should be higher on 91.8 keV comparing to decay with 8Be emission, and corresponding $T_{1/2}$ values should be slightly smaller. However, the difference is not big [13] and is acceptable for our aims of $T_{1/2}$ estimation. The results for some prospective nuclei are given in Table. One can see that even for the most promising cases, half-life values are too big for 2α decay's experimental observation. # 4. First experimental $T_{1/2}$ limit for 2α decay of 209 Bi To obtain the first limit on 2α decay of ^{209}Bi , we can use data from the experiment [26] in which single α decay of ^{209}Bi was observed at the first time. In particular, a BGO (Bi $_4$ Ge $_3$ O $_{12}$) scintillating bolometer with mass of 45.7 g was measured during 100 h in this work. Because of different light yields for β and γ particles comparing to those for α particles of the same energy, energy spectrum of α particles and nuclear recoils is effectively discriminated from much more intensive β and γ background. Because of small range of α particles in the BGO crystal, they are absorbed in the crystal with practically 100 % efficiency. In the heat channel, we should observe a peak for the single α decay of ^{209}Bi at $Q_{\alpha}=3137.3\pm$ $\pm\,0.8$ keV [16], and for the double α decay at $Q_{2\alpha}$ = 3292.2 ± 3.5 keV (see Table). In the data presented in Fig. 2b of Ref. [26], one really sees the peak for 209 Bi single α decay, while the peak at $Q_{2\alpha}$ is absent. In fact, no events are registered in the energy range 3.2 - 3.4 MeV which fully contains the expected 2α peak (full width at half maximum, FWHM is ~15 keV [26]). Thus, we can estimate only $T_{1/2}$ limit for the 209 Bi 2α decay with the formula: $$\lim T_{1/2} = \ln 2 \cdot \epsilon \cdot N_{209} \cdot t / \lim S,$$ where ϵ is the efficiency to detect the expected 2α decay ($\epsilon=1$), N_{209} is the number of 209 Bi nuclei in the 45.7 g Bi $_4$ Ge $_3$ O $_{12}$ crystal ($N_{209}=8.84\cdot10^{22}$), t is the time of measurements (t = 100 h), and lim S is the upper limit on the number of events of the effect searched for which can be excluded at a given confidence level (C.L.). In accordance with the Feldman-Cousins recommendations [27], for 0 registered events (and with 0 supposed background), lim S = =2.44 at 90 % C.L. Substituting all the values in the formula above, we obtain the following constraint on the 209 Bi 2α decay: $$T_{1/2} > 2.9 \cdot 10^{20}$$ y at 90 % C.L. The obtained experimental limit is very far from the theoretical expectations presented in Section 3 (for 209 Bi, $T_{1/2} = 4.3 \cdot 10^{113}$ y). Half-life limit for 2α decay of 232 Th, nuclide with quite big energy release $Q_{2\alpha}=8152$ keV and high natural abundance near 100 %, could be derived from e.g. measurements [28] of 2 kg ThO₂ sample with HPGe detector at the Yangyang underground laboratory (Korea). The daughter nuclide 224 Rn is unstable and β decays further to 224 Fr with $Q_{\beta}=800$ keV and $T_{1/2}=107$ m [22]. One can look for characteristic γ quanta emitted in ^{224}Rn (and $^{224}Fr)$ decay. #### 5. Conclusions Nuclear decay $(A,Z) \rightarrow (A-8,Z-4) + 2\alpha$ with simultaneous emission of two alpha particles is energetically allowed for near 40 % of known isotopes (1459 from 3436 listed in [16]). Among them, 80 nuclides are present in the natural isotopic composition of elements [21]. First experimental limit for this kind of radioactivity is given for ²⁰⁹Bi as $T_{1/2} > 2.9 \cdot 10^{20}$ y at 90 % C.L. Theoretical $T_{1/2}$ estimations are calculated for the most prospective candidates. However, the calculated $T_{1/2}$ values are very big, 10^{33} y or more, making prospects for future observation of such processes very pessimistic. The work was supported in part by the National Research Foundation of Ukraine Grant No. 2020.02/0011. It is my pleasure to thank F. A. Danevich, V. V. Kobychev and O. G. Polischuk for useful discussions. I am grateful to Yu. N. Novikov who draws my attention to papers [11, 12]. Note added in proofs. After appearance of eprint version of this work [29], very recently 2α decay of ^{212}Po and ^{224}Ra was described in a microscopic framework based on energy density functional [30]. The calculated half-lives for two alpha particles emitted in opposite directions were found to be 20 (13) orders of magnitude lower for ^{212}Po (^{224}Ra) in comparison with those obtained with semi-empirical formula for ^8Be emission [23]. This gives more hopes for experimental investigation of the process. ## **REFERENCES** - 1. M. Goeppert-Mayer. Double beta-disintegration. Phys. Rev. 48 (1935) 512. - R. Saakyan. Two-neutrino double-beta decay. Annu. Rev. Nucl. Part. Sci. 63 (2013) 503. - 3. K. Blaum et al. Neutrinoless double-electron capture. Rev. Mod. Phys. 92 (2020) 045007. - 4. W.H. Furry. On transition probabilities in double beta-disintegration. Phys. Rev. 56 (1939) 1184. - M.J. Dolinski, A.W.P. Poon, W. Rodejohann. Neutrinoless double beta decay: Status and prospects. Annu. Rev. Nucl. Part. Sci. 69 (2019) 219. - M. Goeppert. Uber die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Naturwissenschaften 17 (1929) 932. - 7. M. Goeppert-Mayer. Uber Elementarakte mit zwei Quantensprungen. Ann. Phys. (Leipz.) 401 (1931) 273. - G. Sutter. Étude expérimentale de la double émission gamma dans les transitions monopolaires des noyaux ¹⁶O, ⁴⁰Ca et ⁹⁰Zr. Ann. Phys. (Paris) 13 (1963) 323. - 9. C. Walz et al. Observation of the competitive double-gamma nuclear decay. Nature 526 (2015) 406. - M. Pfutzner et al. Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84 (2012) 567. - 11. Yu.N. Novikov. Some features of nuclei close to the boundaries of nucleon stability. Int. Workshop on U-400 Program. JINR (1979) p. 15. - 12. E.E. Berlovich, Yu.N. Novikov. One- and manynucleon radioactivity of atomic nuclei. In: B.S. Dzhelepov (ed.). *Modern Methods of Nuclear Spectroscopy 1986.* (Leningrad, Nauka, 1988) p. 107. - 13. D.N. Poenaru, M. Ivascu. Two alpha, three alpha and multiple heavy-ion radioactivities. J. Physique Lett. 46 (1985) 591. - 14. D.N. Poenaru, M.S. Ivascu. *Particle Emission from Nuclei, Vol. II. Alpha, Proton, and Heavy Ion Radioactivities* (USA, CRC Press, 1989) 271 p. - W. von Oertzen. Alpha-cluster condensations in nuclei and experimental approaches for their studies. In: C. Beck (ed.). *Clusters in Nuclei*. Vol. 1. (Germany, Springer, 2010) 328 p. (Lecture Notes in Physics 818). - 16. M. Wang et al. The Ame2016 atomic mass evaluation. (II). Tables, graphs and references. Chin. Phys. C 41 (2017) 030003. - 17. P. Belli et al. Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 55 (2019) 140. - R. Bernabei et al. First model independent results from DAMA/LIBRA-phase2. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 19 (2018) 307. - 19. E. Aprile et al. The XENON1T dark matter experiment. Eur. Phys. J. C 77 (2017) 881. - 20. G. Alimonti et al. The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Meth. A 600 (2009) 568. - 21. J. Meija et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88 (2016) 293. - 22. R.B. Firestone et al. *Table of Isotopes*. 8th ed. (USA, John Wiley & Sons, 1996) and CD update (1998). - 23. D.N. Poenaru et al. Systematics of cluster decay modes. Phys. Rev. C 65 (2002) 054308. - 24. V.I. Tretyak. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 33 (2010) 40. - S. Pirro, P. Mauskopf. Advances in bolometer technology for fundamental physics. Annu. Rev. Nucl. Part. Sci. 67 (2017) 161. - 26. P. de Marcillac et al. Experimental detection of α -particles from the radioactive decay of natural bismuth. Nature 422 (2003) 876. - G.J. Feldman, R.D. Cousins. Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57 (1998) 3873. - 28. G.W. Kim et al. Improved intensities for the γ transitions with E $_{\gamma}$ > 3 MeV from ²⁰⁸Pb*. Phys. Rev. C 102 (2020) 064306. - 29. V.I. Tretyak. Spontaneous double alpha decay: First experimental limit and prospects of investigation. arXiv:2102.12005v1 [nucl-ex] 24 Feb 2021. - 30. F. Mercier et al. Microscopic description of 2α decay in 212 Po and 224 Ra isotopes. Phys. Rev. Lett. 127 (2021) 012501. ### В. І. Третяк* Інститут ядерних досліджень НАН України, Київ, Україна *Відповідальний автор: tretyak@kinr.kiev.ua # СПОНТАННИЙ ПОДВІЙНИЙ АЛЬФА РОЗПАД: ПЕРШЕ ЕКСПЕРИМЕНТАЛЬНЕ ОБМЕЖЕННЯ ТА ПЕРСПЕКТИВИ ДОСЛІДЖЕНЬ Ядерні розпади з одночасним випромінюванням двох альфа частинок енергетично можливі для ряду нуклідів. Обговорюються перспективи пошуку такого розпаду для нуклідів, присутніх у природному ізотопному складі елементів. Отримано перше експериментальне обмеження на період напіврозпаду для 2α розпаду 209 Ві $T_{1/2} > 2,9\cdot 10^{20}$ р. при 90 % довірчій імовірності, з використанням даних роботи [P. de Marcillac et al. Nature 422 (2003) 876]. Також наводяться теоретичні оцінки $T_{1/2}$ для такого процесу. Ці значення знаходяться на рівні 10^{33} і більше років, з чого можна зробити висновок, що перспективи експериментального спостереження 2α розпаду дуже песимістичні. *Ключові слова*: подвійний альфа розпад, експерименти з низьким фоном, теоретичні та експериментальні періоди напіврозпаду. Надійшла/Received 05.02.2021