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DETERMINATION OF THE NUCLEAR RADIUS PARAMETER 

USING THE -RAY SPECTROMETER 
 

The nuclear radius parameter of carbon, aluminium, iron, copper, and zinc nuclei has been determined by using 
(n, γ)-reaction. The neutrons from the americium-beryllium source are made to interact with the water moderator to 
produce the γ-rays of 2.2 MeV through (n, γ)-reaction. The γ-radiation emitted from the water medium is measured 
with a scintillation detector coupled to 8k multi-channel analyzer. The neutrons from the americium-beryllium source 
are allowed to transmit through carbon, aluminium, iron, copper, and zinc elemental targets of various thicknesses, 
and transmitted neutrons are again allowed to interact with water moderator to produce 2.2 MeV γ-radiation. By 
measuring the yield of γ-radiation produced in water moderator by neutrons transmitted through elemental targets of 
different mass number values, the total neutron interaction cross-sections are determined. By knowing the total 
neutron interaction cross-sections and mass number of the target nuclei, the radius parameter has been determined. 

Keywords: americium-beryllium neutron source, scintillation detector, neutron interaction cross-section, nuclear 
radius parameter, (n, γ)-reaction. 

 

1. Introduction 
 

Several researchers have already carried out 

experiments in nuclear and radiation physics using 

weak radioactive sources to determine various 

parameters such as rest mass energy of electrons, the 

binding energy of electrons, effective atomic 

number, and verification of Moseley’s law [1 - 8]. 

However, the measurement of the radius of a 

nucleus using a weak neutron source has been a 

challenging topic in nuclear physics. In the present 

investigation, the authors have shown that the 

nuclear radii of medium atomic number Z elements 

can be determined using a weak neutron source and 

low energy resolution -detector. 
Atomic nuclei are composed of neutrons and 

protons, and they are bound together by a short-
range nuclear attractive force. The spherical nuclei 
possess the least surface area and provide maximum 
nuclear force to bind the nucleons in the nucleus. 
This signifies that the spatial distribution of protons 
and neutrons is uniform throughout the nucleus. The 
radius R of such a nucleus is given by R = RoA

1/3, 
where Ro is the radius parameter. This indicates that 
R has a dependency on the mass number A, R is 
proportional to A1/3. Kenneth Krane [9] has stated 
that the value of nuclear radius depends on the kind 
of experiment involved. The experiments such as 
high energy electron scattering, muonic X-rays, 
optical and X-ray isotope shifts, and energy 
differences of mirror nuclei would determine nuclear 
charge distribution, while Rutherford scattering, 
alpha-decay, and pionic X-rays and neutron scat-
tering determine the distribution of nucleons. 

Several investigators have adopted various experi-
mental as well as theoretical techniques to determine 
the radius parameter of the nuclei [10 - 18]. The 
neutron scattering experiment is one of the simplest 
and low-cost undergraduate experiments to measure 
the radius parameter as indicated by the reference 
[18]. In this experiment, the total neutron cross-

section T for the interaction of incident neutrons 
with the various targets of mass number A is 

measured. The plot of T / 2   versus A1/3 gives a 

straight line and slope would give the radius 
parameter. In all these experiments, the neutrons are 
measured with a stilbene crystal or plastic scin-
tillator coupled to a photomultiplier. Some of the 

graduate laboratories although carrying out -ray 
interaction experiments are unable to perform basic 
nuclear physics experiments such as the measu-
rement of nuclear radius due to the lack of a neutron 
detector. In the present work, authors have shown 
for the first time that the nuclear radius parameter of 
medium Z nuclei can be determined by converting a 

neutron into -radiation through (n, γ)-reaction and 

by measuring the -radiation with available scin-

tillation -ray spectrometer. 
 

2. Theory 
 

When the neutrons are incident on a target, some 

are scattered, some are absorbed, and some are 

transmitted through the target without interaction with 

the target nuclei. The absorption and scattering of 

neutrons by the nucleus depend on the de-Broglie 

wavelength λ of the incident neutron. When λ is small 
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compared to the size of a nucleus, a large number of 

neutrons are not scattered by the nucleus. On the 

other hand, if λ is equal to or greater than the size of 

a nucleus, most of the neutrons would undergo 

collision with the nucleus. Consequently, the 

incident neutrons are either scattered or absorbed. 

The probability of scattering or absorption can be 

expressed in terms of the cross-section. The cross-

section is the ratio of the number of scattering or 

absorption per unit time per nucleus to the number 

of incident particles per unit time per unit area. 

Hence the total cross-section σT is the sum of the 

scattering section σs and absorption section σa. The 

σT can be determined by adopting the neutron 

transmission method. Several investigators have 

measured the total neutron cross-sections to 

determine the nuclear radius parameter. However, in 

the present investigation, the incident and trans-

mitted neutrons are converted into 2.2 MeV -radia-

tions by the interaction of neutrons with the water 

medium [19]. The energy and yield of -radiation 

are measured with NaI(Tl) γ-ray spectrometer. 

Therefore, the yield of -radiation is directly 

connected to the yield of an incident neutron [19]. 

Let Io be the yield of -radiations detected by the 

scintillation detector due to the interaction of No 

number of neutrons with the water medium. Let I be 

the number of -radiation due to the interaction of N 

number of neutrons with water medium after 

transmitted through an elemental target of thickness t. 

The yield of -photon I is given by 
 

 μt

o ,I I e−=  (1) 
 

where μ is the linear attenuation coefficient of 

neutrons in the given target of thickness t. Then, the 

σT can be expressed as 
 

 T

μ
σ ,

n
=  (2) 

 

where n is the number of nuclei per cm3 of the target 

and equation (1) can be written as 
 

 Tσ nt
o ,I I e−=  (3) 
 

 Tσ nt

o

,
I

T e
 I

−= =  (4) 

 

 TlnT σ nt,= −  (5) 
 

 T

lnT
σ ,

nt
= −  (6) 

 

where nt is the number of nuclei per cm2. The total 

cross-section can be determined by knowing Io and I 

[20]. According to the optical model of the nucleus, 

the total cross-section can be given by 
 

 T s a ,σ σ σ= +  (7) 
 

where s  is the scattering cross-section and a   is 

the absorption (reaction) cross-section. The total 

cross-section can be written as mentioned in 

Ref. [21]. 
 

 ( ) ( )
2 2

T ,σ π R π R + + +  (8) 

 

 ( )
2

T ,σ 2π R +  (9) 

 

where the radius of nucleus R = RoA
1/3, A is a mass 

number of the scattering sample and ƛ is the reduced 

de-Broglie wavelength of an incident neutron. The 

Tσ  can be written as 
 

 1/3
T oσ ./ 2 R A = +  (10) 

 

From the plot of Tσ / 2  versus A1/3, the radius 

parameter Ro can be determined. 
 

3. Experimental Details and Data analysis 
 

The experimental arrangement used in the present 

investigation is shown in Fig. 1. It consists of an 

americium-beryllium neutron source that is shielded 

into the cylindrical paraffin container of 20 inch 

height and 10 inch in diameter, a lead absorber of  

~2 cm thick on the paraffin container, elemental 

target samples of 4 cm × 4 cm, water moderator of  

5 cm ×5 cm and 2” × 2” NaI(Tl) -ray spectrometer 

coupled to 8k multichannel analyzer. 

The transmitted neutrons through the lead and 

elemental targets were trimmed with collimators C1 

and C2 to have a good geometrical interaction with 

the water moderator. The C3 collimator was used to 

trim the obtained 2.2 MeV gamma from the water 

moderator essentially due to p(n, γ)d-reaction. The 

-ray spectrometer was calibrated using energy lines 

of 137Cs, 60Co, 22Na, 54Mn, 133Ba radioactive 

nuclides. The calibration constant was found to be 

(1.70 ± 0.03)∙10-3 MeV/channel with a linear fit. The 

americium-beryllium neutron source has a half-life 

of 432.2 yr and emits about 105 neutrons per unit 

area per second with an average energy of 4.2 MeV 

[22]. Along with neutrons, γ-rays of 59.5 keV and 

4.4 MeV are also emitted from the nuclear  

de-excitation of 241Am and 12C, respectively [23].  

In order to obtain the neutrons which are almost 

free from -radiations, a lead shield of thickness  

~2 cm was placed at the exit window of the paraffin 

container. The lead has  been  used for attenuation of  
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Fig. 1. A schematic experimental arrangement to determine the nuclear radius parameter of medium atomic number 

elements using a weak neutron source. S - neutron source; T - targets; H2O - water medium; C1, C2, and C3 - collimators; 

NaI(Tl) - scintillator crystal; PMT - photo-multiplier tube; HV - high voltage terminal; LV - low voltage terminal;  

MCA - multichannel analyzer. 
 

-radiation and for transmission of neutrons; one can 

expect only transmitted neutrons with maximum 

reduction in the gamma from source as well as 

background radiation. The transmitted neutrons from 

the lead absorber are allowed to interact with the 

water moderator to produce a 2.2 MeV -photon 

through (n, γ)-reaction. The resolution of the 

detector at 2.2 MeV -radiations was found to be 

~0.250 MeV. The area under the peak would give 

the yield of the 2.2 MeV -radiations which are 

essentially due to the interaction of neutrons with the 

water moderator. The neutrons transmitted through 

the lead absorber are allowed to pass through the 

elemental targets of carbon, aluminium, iron, 

copper, and zinc. The transmitted neutrons through 

these foils interact with the water moderator to 

produce 2.2 MeV -radiations. 

The yield of the -radiation is measured for the 

various thicknesses of the given elemental foils. The 

data were acquired for 4000 s at each target sample 

throughout the experiment. The typical -spectra 

produced by neutrons in a water medium after 

passing through various thicknesses of copper 

elemental target is shown in Fig. 2. It is noticed from 

the Figure that the yield of -radiation decreases 

with an increase in the foil thickness, indicating the 

yield of neutron decreases with increasing the 

thickness of the target. By knowing the yield of 

-photon of Io and I, the total cross-sections were 

determined for various Z values, and they are given 

in Table 1.  

 Counts, a.u. 

 
                                                                       Energy, MeV 

Fig. 2. The typical γ-ray spectrum of (n, γ)-reaction for 

copper target at various mass thicknesses. ρ - the density 

of the target, gm/cm3; t - the thickness of the target, cm.  
 

Table 1. The total neutron interaction cross-section 

(σT∙10-24 cm2) for elemental targets 
 

Target σT∙10-24 cm2 

Carbon 0.848 ± 0.055 

Aluminium  1.237 ± 0.139 

Iron 1.780 ± 0.279 

Copper 1.851 ± 0.263 

Zinc 2.055 ± 0.684 
 

A typical plot of ln(I/Io) at various nt for copper 

elemental targets is shown in Fig. 3. The plot of 

Tσ / 2  versus A1/3 gives a straight line; slope 
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gives the radius parameter. The slope obtained from 

Fig. 4 in the present investigation is 1.10 ± 0.068 fm. 

With this, the radius of carbon, aluminium, iron, 

copper, and zinc nuclei was determined using the 

relation R = RoA
1/3.  

 

 In(I/Io), a.u. 

 
                                                           (nt)∙1023 atoms/cm2 

 (T/2)1/2∙10-12, cm 

 
                                                                        A1/3, a.m.u. 

Fig. 3. The experimental points of transmission coefficient 

ln(I/Io) as a function of the number of target atoms per unit 

area nt for the copper target are fitted with a linear 

equation (linear fit).  

Fig. 4. The experimentally obtained total neutron inte-

raction cross-section divided by 2π under the root is 

plotted as a function of A1/3 for elemental targets and 

fitted with a linear equation (linear fit). 
 

Table 2. Comparison of the radii of target nuclei 

determined using the present experiment technique 

and values observed from earlier studies 

using different techniques 
 

Target nucleus 
Radii, fm  

[This work] 

Radii, fm 

[Ref. 13] 

Radii, fm 

[Ref. 24] 

Carbon 2.52 ± 0.16 2.450 2.817 

Aluminium  3.30 ± 0.20 3.209 3.689 

Iron 4.21 ± 0.26 4.089 4.701 

Copper 4.39 ± 0.27 4.269 4.908 

Zinc 4.44 ± 0.27 4.311 4.956 
 

A comparison of the radii values determined by 
this experiment with others is given in Table 2 [13, 
24]. The close agreement between our experimental 
values and the others indicates that the present 
technique can be adopted in graduate laboratories 
that do not have the neutron detector. 

 

4. Conclusions 
 

The radii of medium Z nuclei have been 

determined by using (n, γ)-reaction. The -radiations 

of 2.2 MeV are produced by the interaction of 

neutrons with the water medium. By adopting the 

transmission of neutrons in medium Z elements, the 

total cross-section is determined. From the total 

cross-section, the radius parameter was determined 

and found to be 1.10 ± 0.068 fm. Using this radius 

parameter, the radii of the medium Z elements have 

been determined using the relation, R = RoA
1/3. As it 

is a novel laboratory experiment for graduate and 

undergraduate students, the error in the measured 

values of the radius is not so important. However, 

the error in the measured values is about 6 to 7 %. 

The experimentally determined values have been 

compared with theoretical and experimental values. 

The good agreement indicates that the present 

method can be adopted by graduate laboratories 

using a scintillation -ray spectrometer. 
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ВИЗНАЧЕННЯ РАДІУСА ЯДЕР ЗА ДОПОМОГОЮ -СПЕКТРОМЕТРА 
 

Радіуси ядер вуглецю, алюмінію, заліза, міді та цинку визначено за допомогою (n, γ)-реакції. Нейтрони з 

америцій-берилієвого джерела взаємодіють з водним сповільнювачем, що призводить до випромінення 

γ-квантів з енергією 2,2 МеВ через (n, γ)-реакцію. Це γ-випромінювання вимірюється сцинтиляційним 

детектором, підключеним до багатоканального аналізатора 8k. Нейтрони з америцій-берилієвого джерела 

пропускались через мішені з вуглецю, алюмінію, заліза, міді та цинку різної товщини, і потім також 

взаємодіяли з водним сповільнювачем для отримання 2,2 МеВ γ-випромінювання. При вимірюванні виходу 

γ-квантів визначались повні перерізи взаємодії нейтронів. Із величини повного перерізу визначався параметр, 

що входить в опис залежності радіуса ядер від атомної маси. 

Ключові слова: америцій-берилієве джерело нейтронів, сцинтиляційний детектор, поперечний переріз 

взаємодії нейтронів, радіус ядра, (n, γ)-реакція. 
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