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CROSS-SECTION CALCULATIONS OF PHOTOFISSION REACTIONS
FOR 238:239240241.242244p) ]SOTOPES USING NUCLEAR LEVEL DENSITY

Photofission cross-sections of 238239.240241242.244py jsotopes are theoretically investigated with the collective semi-
classical Fermi gas model (CSCFGM) by using Talys computer code in the energy range 1 - 30 MeV. Nuclear level
density has significant importance to define the structural properties of nuclei. CSCFGM is a nuclear level density model,
that includes collective (rotational and vibrational) effects as well as the pairing and shell effects, and is used to analyse
the (y, f) reactions of plutonium isotopes. The experimental data for all reactions are taken from EXFOR library. The
theoretical predictions are in agreement with the experimental data, Talys code without changing the input, and the
evaluated nuclear cross-section data from TENDL 2021 library.
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1. Introduction

With developing technology and increasing
energy deficit, it is started to think more about the
energy sources in all countries. Energy sources are
increasingly important to protect the natural balance
of the world. One of the energy sources, nuclear
energy is actually known to be safer and environ-
mentally friendly when compares with other power
plants and is extensively produced from the fission of
uranium and plutonium. Therefore, nuclear reactions
of actinides such as uranium and plutonium have
special importance. Especially, nuclear data of
gamma-induced reactions of these isotopes can be
used in radiation transport simulation, shielding of
plasma in fusion reactors, activation analysis, and
nuclear waste transmutation [1]. For all these
applications, it is highly considered to be able to
exactly obtain cross-sections where experimental
data are nonexistent. Therefore, nuclear reaction
models are required to obtain the reaction cross-
sections, particularly at the unknown parts of the
experimental data [2, 3].

Plutonium can be splitted, stored, and used again
in recycled fuel for nuclear power plants and has
many isotopes like all other heavy elements. All of
them are radioactive because they are unstable,
therefore, decay, emit particles, and some gamma
radiation. 2*8Pu is a highly toxic isotope but is used as
an energy source in medical applications and space
technology [4, 5]. It is a high specific activity alpha
emitter and has a half-life of 87.7 yrs. The first
measurement of photofission cross-section of 2*®Pu is
performed by Kapitza et. al up to 8 MeV gamma
energy in 1969 [6]. Since then, many experimental

works have been carried out [7-9]. The most
common isotope of plutonium, Z°Pu emits energetic
alpha particles and has a half-life of 2.41-10* yrs, so
changes happen slowly in this isotope. It is used as a
fuel in nuclear power reactors. There are lots of
experimental works for photofission cross-section
measurements of 2°Pu up to 18 MeV incident energy
in the literature [7, 10 - 17]. The heavier isotopes of
plutonium, ?*Pu, and ?*Pu are long-lived alpha
emitters and have half-lives of 6560 and 376000 yrs,
respectively. ?*°Pu is the second most abundant
plutonium isotope (after 2°Pu). 2**Pu has the second-
longest half-life (after >**Pu) and its abundance is low.
222py js usually used as a spike, because it generally
exists as a minor ingredient in plutonium of the
nuclear fuel cycle. Gamma-induced fission reaction
measurements of *°Pu and ??Pu have been
performed over the years by some groups [6, 9, 18,
19]. ?**Pu is a short-lived beta emitter and has a half-
life of 13.2 yrs to produce ***Am and the amount of
2LAm increases in 2*Pu with time. The radiation
measuements of these isotopes are important because
the amount of Am in a sample relative to the amount
of Pu can give information about the age of the
material [20]. Some experimental works [11, 12, 15]
exist for photofission reactions of 2*!Pu in the
literature. The last plutonium isotope for this work,
24py has the longest half-life (82 My), so is ideally
suitable for dating the events which happen during
that time. Unlike the other isotopes of plutonium,
24py is not produced by neutron capture reactions but
occurs in nature only in trace amounts [21]. Only one
experimental work exists for the photofission reaction
of 2**Pu [22]. There is a special interest to investigate
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the fission of these isotopes using gamma rays due to
the remarkable properties of plutonium isotopes. In
this work, photofission cross-sections of plutonium
isotopes are investigated up to 30 MeV gamma energy.
Collective semi-classical Fermi gas model (CSCFGM)
is used to reproduce the experimental data.

In the following of this paper: In Sec. 2, we give
the method used in our calculations. In Sec. 3, we
represent our results and their discussions. Finally, in
Sec. 4, we present some concluding remarks.

2. Theory
2.1. Calculation method

One of the commonly used computer programs is
Talys [23], which is a computer code system for the
estimation and analysis of nuclear reactions. This
computer program simulates the nuclear reactions
which are caused by particles such as neutron, proton,
deuteron, alpha, triton, and gamma ray in the energy
range from 1 keV to 1 GeV. Additionally, several
nuclear level density models can be used as an
optional input in Talys.

The distribution of exciting levels of nuclei is a
characteristic property. Discrete and continuous
structures of these levels give us information about
the deformation, shell, and pairing effects of nuclei.
Exciting levels have a discrete distribution at low
excitation energies but have a continuous distribution
at increasing energies. One needs particularly to
define these levels at increasing energies, with a
nuclear level density function.

Nuclear level density studies have begun by Bethe
[24] and continued with different approaches by some
scientists [25 - 35] from 1937 until today. The Fermi
gas model proposed by Bethe is basically used for all
nuclear level density models because it is the simple
and successful model for reproducing the
experimental data. According to this model, nucleus
consists of nucleons, which do not interact with each
other, and so all of the excited levels are accepted to
be formed by single-particle excitations and
distributed with equal spacings. Nuclear level density
is the number of the excited levels in uniting energy
interval and its formulation is given as

p(U,J,H)z
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where J is a certain total angular momentum, II
is the parity and o =TI /#%is the spin-cut off
parameter described in terms of the nuclear

temperature T = JU /a and the moment of inertia I,
U = E, — A is effective excitation energy and a is the
level density parameter [24, 36]. Under an approach
of coupling the total angular momentum projections,
Eq. (1) summing by all spins and parities yields the
total Fermi gas level density,

1 exp[zm]
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Eq. (2) is only used in this place. a is the main
variable of the level density function and the
dependence of this parameter on the deformation
parameter 3 and excitation energy U is provided by

the Laplace-like formula (CSCFGM) [37],

S, exp(—|U - E0|/G'C3)
u o2

c

a(U,p)=a|1+A
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where S, is the neutron separation energy,
E, =0.2 2w is the first phonon state energy [38],
hw=41/ A MeV and o’=c>/d is the scale
parameter. The important input parameters for Talys
used in the calculations are given in Table.

Default input parameters for Talys
taken from RIPL-3 [41]

4 A Sy MeV | U MeV | & 1/MeV
94 239 5.646 0.487 23.17571
94 240 6.534 1.137 23.13066
94 241 5.242 0.404 23.25101
94 242 6.310 1.084 23.98803

A, is the collective amplitude and presents the

shape (and thus the deformation) dependence on the
level density parameter and is given below

‘CC
sinht, '

(4)

temperature and

A =S(N,Z,T,,Shape) =[ M, —M gy |

T,=4/S,/a is the critical

T, =2n°T, /hw. M_,, is the experimental mass of

p
the nucleus and M, = M, + E®? is the calculation

of the deformed nucleus with the finite-range liquid-
drop model [39]. M, is the calculated mass of the
spherical nucleus having the same N and Z as the

deformed nucleus. E is a coefficient defined in terms
of parameter x which is a scale of the fission
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capability of a nucleus and is given as
E=(2/5),A%)(1-x)od.  od=5(alr)A?
and 6 =a /0, is the deformation magnitude and a. is
given in terms of the deformation parameter as
o’ =(5/4m)p® [39].

Moreover, the asymptotic level density parameter
a is used in terms of the single-particle level density
at Fermi energy of the nucleus including the shell and
pairing corrections [40]

a:“—Z Zgi(Eif +S(N,Z,TC,Shape)—A), (5)

i=p.n
where g is the single-particle level density and E;
is the Fermi energy. Shell correction S(N,Z)=
=M¢, (N,Z)=M 5y (N,Z,3=0) and the pairing
correction A =+12/+/A are taken into account.

3. Results and discussion

In this study, 2382%924024L242244p(, f) reaction
cross-sections are calculated by using Talys computer
code in the energy range from 1 to 30 MeV. The results
compared with the experimental data taken from
EXFOR library, Talys with default parameters [23]
and TENDL 2021 library [42] are shown in Figs. 1 - 6.
The cross-section calculations are performed for all
reactions with CSCFGM.

3.1 2%8pu(y, ) reaction

Comparison of predicted results with the experi-
mental data measured by some groups [6-9] for
2%8py(y, f) photofission reaction is given in Fig. 1. The
reaction energy interval is 5 - 30 MeV. In this energy
interval, cross-section values start from very low
values and increase above 100 MeV. It is observed that
all experimental works have close results. The
theoretical result obtained with CSCFGM is presented
in good agreement with all experimental data.
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Fig. 1. 28pu(y, f) photofission reaction cross-section calculation
and comparison with the experimental data [6 - 9].

3.2 2%Py(y, ) reaction

In Fig. 2, #%Pu(y, f) photofission reaction cross-
section calculation result and comparison with the
experimental data [7, 10 - 15, 17] are shown. There
are many experimental works and experimental data
are spread over a fairly wide range of cross-section
values. The obtained result with CSCFGM is close to
the existing data between 7 - 11 MeV.

3.3 2°%puy( y, f) reaction

The theoretically calculated cross-section and
experimental data for *°Pu(y, f) [6, 9, 17] are repre-

sented in Fig. 3. There are three experimental works
and one of them has a large experimental error. The
vast majority of experimental data are in the energy
range of 5-30 MeV. The calculated result with
CSCFGM presents the overall distribution of the
cross-section according to the gamma energy.

3.4 22Puy(y, f) reaction

Fig. 4 shows the comparison between the calcu-
lated cross-section of 2*!Pu(y, f) and experimental
data [11, 12, 15]. These data are close to each other.
Theoretical prediction and experimental data are in
agreement, especially after 7 MeV.
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Fig. 2. 2%Pu(y, f) photofission reaction cross-section calculation
and comparison with the experimental data [7, 10 - 15, 17].
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Fig. 3. 2%Pu(y, f) photofission reaction cross-section calculation
and comparison with the experimental data [6, 9, 17].

100.0000000

1.0000000

0.0100000

Cross-section, mb

0.0001000 Zduchko (1978) ———
Ostapenko (1978) +—e— 1
Soldatov (1992) ———
This work ——
0.0000010 f Talys —— E
TENDL - ---

5 10 15 20 25 30
Gamma energy, MeV

Fig. 4. ?'Pu(y, f) photofission reaction cross-section calculation
and comparison with the experimental data [11, 12, 15].
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3.5 242py(y, f) reaction

A comparison of the experimental cross-section
values [6, 9, 18] with theoretical prediction based on the
CSCFGM for 2*Pu(y, f) is given in Fig. 5. All data
values dramatically increase in the energy range of

5 - 10 MeV. One of the experimental works has a large
experimental error. As seen from the Figure, theoretical
prediction is in good agreement with the experimental
data, but around 15 - 30 MeV, the prediction result
moves away a little bit from the data values.
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Fig. 5. 2Pu(y, f) photofission reaction cross-section calculation
and comparison with the experimental data [6, 9, 18].

3.6 24Pu(y, f) reaction

The calculation result with CSCFGM by using
Talys code and comparison with experimental data
[21] for #**Pu(y, f) are presented in Fig. 6. Only one
experimental work is reported in the literature.

Experimental values start increasing from very high
cross-section values according to other reactions. The
CSCFGM result generally is consistent with the
experimental data. However, experimental data have
fluctuations in the energy range of 20 - 30 MeV, but
theoretical prediction has not a similar behavior.
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Fig. 6. 24Pu(y, ) photofission reaction cross-section calculation
and comparison with the experimental data [22].
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4, Conclusions

This study represents the results of theoretical
model calculations of photofission reaction cross-
sections of plutonium isotopes. The obtained
theoretical results of (y, f) reactions are performed
with CSCFGM by using Talys computer code in the
energy range 1 - 30 MeV and are compared with
available experimental data in the literature. The
results can be summarized as follows:

— The computed results with CSCFGM show the
close results to the the measured data for all energy
ranges not as much as TENDL and Talys results.
However, this model can be used as an optional input.
In addition, while unsmooth behavior around 5 MeV
is observed at higher cross-section values in the
experimental data, it is observed at lower cross-

section values in the calculation results. This behavior
can partially be explained by the decreasing of shell
corrections near the N = 82 mass region.

— CSCFGM provides the general behavior in the
photofission reaction cross-section calculations of
plutonium isotopes with the Talys code without
changing the input in the program and TENDL 2021
library [42]. In addition, calculations from TENDL
library are given with the best input parameters using
Talys code. Therefore, the most reliable values of the
cross-sections are presented from TENDL library.

— Inthis study, it is desired to show that a nuclear
level density model which incoporates the collective
effects into calculations more fundamentally,
contrary to the general belief, can also be used in the
calculations of nuclear reaction cross-section.
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PO3PAXYHKM MOMEPEYHUX MEPEPI3IB PEAKIIII ®OTONOALTY
JJISI I30TOIIIB 238:239.240241242.244py 3 BUKOPUCTAHHSAM I'YCTUHU SIJIEPHUX PIBHIB

I[Tonepeuni nepepisu GoTonominy izoromnip 238:239.240241,242.244py teopeTHUHO PO3PAXOBAHO 32 JOIIOMOTOK0 KOJIEKTUBHOT
HamniBkiaacuuHoi Mojeni razy ®epmi (CSCFGM) 3a momomororo komm’totepHoro koxy Talys y nmiama3oni eHepriid
1 - 30 MeB. I'yctuHa siiepHUX piBHIB Ma€ BaKJIMBE 3HAUEHHS JJIsI BU3HAYCHHS CTPYKTYPHHMX BIIACTHBOCTEH sIep.
CSCFGM — 11e Mozienb TyCTHHU SepHHX PIBHIB, 10 BKIIIOYAE KOJIEKTHBHI (00epTasbHi Ta BiOpaniiHi) eeKTH, a TakoxK
eeKTn CrapioBaHHs Ta OOOJOHKH, i BUKOPHCTOBYETHCS IS aHamizy peakuiil (y, f) i3otomiB mmyronito. Excrnepu-
MEHTAJIBHI JIaH1 JJIs BCiX peakiii y3sato 3 0i0miorekn EXFOR. TeopeTuuHi po3paxyHKH y3TrOKYIOTECS 3 CKCIICPUMCH-
TaJIbHUMU JaHUMH, pe3yJibTaTaMu 3a kojoM Talys 6e3 3MiHM BXiAHUX JJaHUX 1 OLIHEHUMH JTaHUMHU SIAEPHUX MTOTIEPEUHUX
mepepisiB i3 6i6miorexkn TENDL 2021.

Kniouosi crosa: peakuis ¢oronoginy, Talys, rycTuHa sigepHUX piBHIB, i30TONH ITYTOHIO.
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