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Using the methods of kinetic theory, expressions for the diffusion and drift coefficients for a cold Fermi system are
obtained. Their dependencies on the momentum are calculated for the step distribution function as well as in the case of

excitation of a particle-hole pair.
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1. Introduction

Recently, in a number of papers [1 - 4], the pro-
cesses of relaxation of collective excitations in a
Fermi system were considered in the framework of
the diffuse approximation. This approximation is
based on a nonlinear diffusion equation in momentum
space which contains the kinetic coefficients of diffu-
sion and drift. In the general case, the diffusion and
drift coefficients depend not only on time but also on
momentum. However, an approximation of constant
kinetic coefficients is often used. In this case, the non-
linear diffusion equation can be simplified and solved
exactly [5]. This solution allows us to study the evo-
lution of the Fermi system in time and obtain an
expression for the relaxation time of both collective
excitations and excitations of the particle-hole type in
atomic nuclei [1, 5].

The approximation of constant kinetic coefficients
is rather rough since it does not take into account their
rather significant dependence on momentum [2, 3].
The study of the apparent momentum dependence of
the kinetic coefficients is actually a separate problem.
In this case, when it is considered by the methods of
the kinetic theory it is necessary to solve the problem
with the ninefold collision integral by means of which
the coefficients are determined. To simplify calcula-
tions at low temperatures the small momentum trans-
fer approximation is used when particles are scattered
near the Fermi surface. However, this is not enough
to obtain a physically correct result. It is necessary to
make an assumption about the nature of the interac-
tion of the scattering particles. Previously, the iso-
tropic probability approximation was considered a
good approximation of nucleon scattering [6, 7].
However, in this case, when calculating the Kinetic

coefficients divergent integral expressions are
obtained. In previous papers, we showed that this can
be avoided by imposing short-range conditions on the
internucleon potential [3]. In particular, for the Gauss
potential, it was possible to obtain convergent expres-
sions for the kinetic coefficients and calculate their
numerical values and temperature dependencies
based on such phenomenological parameters of inter-
nucleon interaction as the potential depth and its
effective radius. At the same time, the calculation of
the kinetic coefficients for zero temperature was not
carried out due to the arising technical difficulties.

This work is devoted to solving these technical
difficulties and to the exact calculation of the kinetic
coefficients of diffusion and drift at zero temperature
of the Fermi system and in the case of excitation of a
particle-hole pair.

2. Kinetic diffusion and drift coefficients

Consideration will begin using the results already
obtained in our previous papers. Let us write down
the general expressions for the kinetic coefficients of
diffusion and drift [3, 8]

_1p gds
D,(P) =< 2 S WPs), (1)
Kp(p>=%(vpop<p)—A(p)), @

where the corresponding integral expressions are [3]
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29 do
W (p,s) = mdo
Here g is the spin-isospin degeneracy factor, m is
the nucleon mass, do/dQ is the nucleon scattering
cross section, ¢; = pjz/Zm is the kinetic energy. The
blocking factor that takes into account the Pauli
principle is indicated by a tilde over the distribution
function f(p)=1— f(p).

Recall that in the microscopic calculation of the
kinetic coefficients of diffusion D, (p) and drift

p-s
(S )Jdpz dp4 f (pz) f (p4)6( P, _5)8(62 —G _Fj

(4)

K,(p) one considers the scattering of nucleons with

initial momenta p, and p, into the final states p,
and p,. Nucleon scattering occurs near the Fermi

surface, so the cross section do/dQ depends on the
square of the small momentum transferred
s=p,—P; [3, 6]

After substituting Eq. (4) into Egs. (1) and (3) and
integrating over the small momentum transfer s, we
get

29° 2 d 2\ § P

Dy (P) ~ g oy [dp,dp, (p, -p.) 1o g[(pz -p.)* ) F(p,) f(p.) 5(62 —G (P, —pgj, (5)
7 P

A(p)~—(2 ) = [ dp,dp, p(p, - p4) [(pz ))f(p2>f(p4)8(62—64—E<p2—p4)j. (6)

Carrying out the transformations described in
detail in Appendix A, we obtain general expressions
for the diffusion coefficient D (p) and the integral

value A(p), which is included in the definition of

Dp(p)~—3 ) |

the drift coefficient Eq. (2), for the case of spherically
symmetric distributions f(p)= f(p) of nucleonsin

the momentum space

ijdedQ f[\/k2+p + 2kpcos6, ]

de {(1 cosqk):jj (2k - cosqk)) {\/k2+p2+2kpcoseq]+

A(p) = (2 )

(1+cosqk)g (2k*(L+ cosak) ) f (\/k2+p2—2kpcoseq”, 7
jk“dkjdg f[\/k2+p + 2kpcos, ]
xIqu{(coseq—cosejj (2k* (1~ cosqk)) [\/k2+p +2kpcosqp]
~(cos0, +cosekjg—g(2k2(1+ cosqk) | f[\/k2 4+ p? —2kpcosqp}}. )

Note, that in order for the integral expressions of
the Egs. (7) and (8) to have limited values the fol-
lowing condition for the differential cross section
must be satisfied:

lim kSS (2k*@cosak))=0. (@)

This condition is satisfied by the finite-radius
inter-particle interaction with the following Gaussian
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form-factor v(r)=v,exp(-r?/2r?) which is appro-
priate for calculations of the in-medium cross-section
within the transport approaches. The differential cross
section do/dQ in the first Born approximation is
then given by [9]

do(s?) _
do

v
2n*

exp[—4s 2/ hz] (10)

where 1, and v, are the free parameters.
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Substituting Eq. (10) into the integral expressions
(7) and (8) and performing transformations which are
described in detail in Appendix B, we obtain the final

expressions for the diffusion coefficient D (p) and
integral expression A(p):

OPMIVE Tros o oo :
Dy (p) == = [K¥dk [ dx [ dy exp(-a(k,x y) f(a,)  (a,) x
0 -1 -1

x| A=) Bk % y) — 2= x)A- y)1, Bk, x.y)) |

A(p) ~ T2 Ticak f ox | dy exp(-aulk, x. )T (0,) (@, )0 V) (Bk. x.¥)),

-1 -1

where the functions of three variables a(k,X,y) and
B(k,X,y) have the form

a(k, x, y) =8k?r?(1—xy)/#?,

Bk, x,y) =8k J1-x*)(1-y?) /r®. (13)

Also here are the expressions

G, =+/ P> +Kk* +2pkx,
g, =/ p?+k?+2pky.

I,(x) are modified Bessel functions of the first kind.

(14)

3. Kinetic coefficients for a cold Fermi system

Consider the Fermi system at zero temperature
(T =0), which is described by the step distribution

function in the momentum space

f(p)=6(pz — p°).

For the step distribution function (15), the integra-
tion contribution is limited to a sphere with a radius
pe. therefore, when integrating into the expressions

(11) and (12), the product f(qx)f(qy) highlights a

certain area, which can be taken into account by
means of certain minimum and maximum values of
the integration limits.

The expressions for the diffusion coefficient
D,(p) and the quantity A(p) can be represented in

(15)

a form convenient for further consideration

(11)
(12)
where
2 6,,2
const = 2 mhrg Y , (18)
1 Ymax
d(p.k)= [ dx [ dyG(kxy),  (19)
Xmin -1
1 ymax
a(pk)= [ dx [ dyF(kxy).  (0)
Xmin -1

The minimum and maximum integration limits in
the expressions (19) and (20) take the form

Xinin = mln(l, max(—:L Z))!

Ymax = maX(—L mm(-L Z))v (21)
where the notation is defined as
2 2 2
,_Pe—p -k (22)

2 pk
Accordingly, the integrand functions are written as
G(k7 X, y) = exp(_a(ka X, Y)) X
K[ (=31 (B X ) T XA Y LB x. V) |
(23)

F (k’ X, y) = (X - y) eXp(—OL(k, X, y)) IO(ﬁ(ka X, y))
(24)

The expressions (16) and (17) at zero momentum
are zero D, (0)=0, A(0)=0. As the momentum

D,(p) = constIdk k®d(p,k), (16) increases to infinitely large values both quantities
0 asymptotically approach zero values
A(p) ~ const 3[ dk k* a(p.k), (17) imD,(p)=0  limA(p)=0. (25
0
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Fig. 1 shows the diffusion coefficient D, (p)

versus relative momentum (in units of the Fermi
momentum p, ) for the cold Fermi system (T =0),

which are obtained in accordance with the
expressions (16) - (24).

For clarity, all the results were obtained for a light
nucleus with a mass number A=16, because in the
region of medium and heavy atomic nuclei,
the calculations are not representative. The Fermi
energy was chosen to be typical for nuclear matter

e =37 MeV. As you can see, the diffusion
coefficient is non-zero and has a maximum, which is

located in the region of the Fermi surface and is
approximately D, ,(p;)~3.38-10% MeV*fm s,

The drift coefficient in Fig. 2 is also non-zero and
has a minimum with a negative sign which is loca-
lized near the Fermi surface ( p/ p- ~1.2) and is

K,o(1.2p:) ~—35-10% MeV - fm . s. In accor-

dance with expression (2), the coefficient drift tends
to an infinitely large positive value as the momentum
decreases to zero. Asymptotic dependencies of the
diffusion D, (p) and drift K (p) coefficients with

an infinite increase in momentum are consistent with
their limiting zero values (25).
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Fig. 1. Dependence of the diffusion coefficient D, (p)

on the relative momentum p/p. for a cold Fermi
system described by the step distribution function (15).

It is interesting to compare the values of
D,o(pe) and K, ,(2.2p) with the corresponding

values of the diffusion and drift coefficients given in
[5]: D=20-10° MeV?-s*, v=-5.10"° MeV-s™.
It should be noted here that our approach considers
the kinetic coefficients for the diffusion equation in
partial derivatives with respect to time and
momentum [2, 3]. This fact is denoted by the
subscript “p” of the coefficients D, (p) and K (p).
In [5] the diffusion equation is written in partial
derivatives with respect to time and energy. There-
fore, the corresponding kinetic coefficients D and
v have different values and dimensions. Comparing
the diffusion equation for both cases we find

2 2
D~ Dp,o(pF)(%] VK2 m)[%j .

Taking into account the value of the Fermi energy we
obtain the value of the multiplication factor

pZ /m? ~0.709-10 fm*.s?. Substituting  the
obtained numerical values, we get
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15}

10 \ .

K,(D), 107 (MeV<m>s)

T 15 2
P/Pr
Fig. 2. Dependence of the drift coefficient K (p) onthe
relative momentum p/p. for a cold Fermi system
described by the step distribution function (15).

D ~24-10® MeV?-s*, v~-25.10° MeV-s™. As

we can see, the diffusion coefficient obtained in our
approach is quite close to the value from [5], while
the drift coefficient differs by a factor of two.

In accordance with the diffusion equation, the
difference from zero of the diffusion and drift
coefficients means that even in an absolutely cold
Fermi system momentum transfer processes and
consequently a change of state is possible. The most
rapid smearing of the step distribution will occur in
the region of the Fermi surface and as you move away
from it the smearing rates will decrease.

4. Particle-hole excitation in a cold Fermi system

Let us now consider the excitation of a particle-
hole pair in a cold Fermi system. Such a state is
described by the initial distribution function in the
form

fu(P) =] O(P = p?) +6(p’ - p7) |x

x0(pg — p*)+6(p; — p*)O(p*—p;).  (26)

NUCLEAR PHYSICS AND ATOMIC ENERGY 2023 Vol.24 No.1
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The distribution f,,(p) of Eg. (26) means the
particle located at p, < p< p, and the hole excita-
tionat p, < p<p, forfixed p,>p. and p, < p.,

respectively. The intervals Ap =p,—p, and
Ap = p,—p, are derived from the conditions
"t 4ngVvdp
f (p,t=0)=A-1,
'('). (2ﬂh)3 p |n(p )
T 4ngvdp
f (p,t=0)=1. 27
| 2y ¥ fa(P1=0) (27)

Pe

For such a distribution function, the product
f~(qx) f(qg,) has a slightly more complex character

the general expression of which is given in Appendix
B. This expression contains 12 terms that impose
conditions on the integration limits x X and

min,i ? max,i

Yoini Ymay Where i=12, ..., 12 Expressions for

these integration limits are given in Appendix C. So,
taking into account the above, we present expressions
for the diffusion coefficient and the integral value

A(p):

Dp(p) ~ constTdk k® (Za: d,(p,k) —idi(p,k)j,
o 7 (29)

A

5]
LI B

i T E.=10 MeV

D,(p), 10 (MeV'-fm *s)

A — E_=20 MeV
3 4 — E_=30 MeV
1 ’ ex _
L I B
00 Q0.5 1 135 2
P/Pg

Fig. 3. Dependence of the diffusion coefficient D, (p)

on the relative momentum p/p. in the case of

excitation of a particle-hole pair for a Fermi system which
is described by the distribution function (26) for case (a).

In general, as can be seen from Fig. 3, the
dependence on the momentum has a similar character
to the case of the step distribution function which is
added here for comparison as a dashed curve. It is also
noteworthy that the higher the value of the excitation
energy E, the greater the value of D (p) except

for a small region of small impulses.

where

Xmax i Ymax,i

d.(p,k) = j dx j dy G(K, X, y).

Xmin i

(29)

Ymin i

A(p) ~ const STdk k* (i a,(p,k) —iai(p,k)}

(30)
where

Ximax,i Ymax.i

a,(p,k) = jdx j dy F(k, X, y).

X

31)

min, i Ymin.i

We have calculated the dependencies of the
diffusion D, (p) and drift K (p) coefficients on

the momentum according to the expressions (28)-
(31). Two characteristic cases of excitation of a
particle-hole pair are considered for three values of
the excitation energy: E,, =10,20 and 30 MeV. In

the first case (a), the nucleon is excited from a level
lying below the Fermi energy by 5 MeV to different
levels lying above the Fermi energy. In the second
case (b), the nucleon is excited from different levels
below the Fermi level to the same level which lies
above the Fermi level by 5 MeV. Figs. 3 and 4 show
the results of calculations for case (a), and Figs. 5 and
6 show calculations for case (b).

20—

—
L
L

B, =10 MeV
-~ E_=20 MeV 1
— E,=30 MeV 7

[
o
N

K,(p), 10”7 (MeV-fm"s)
L -

(=)
T

B S -
P/Pg
Fig. 4. Dependence of the drift coefficient K (p) on the

relative momentum p/ p. in the case of excitation of a

particle-hole pair for a Fermi system which is described
by the distribution function (26) for case (a).

In Fig. 4 we present the dependencies obtained for
the drift coefficient K (p) together with the case for

the stepwise distribution. As can be seen from the
figure, K (p) is actually independent of the excita-

tion energy outside the Fermi surface (all curves
coincide). In the middle of the Fermi sphere (for

ISSN 1818-331X  SJEPHA ®I3UKA TA EHEPTETUKA 2023 T.24 Nel 9
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p/ pe <1), there is a noticeable strong oscillating de-
viation from the case of the stepwise distribution.
Here one should note the appearance of one more
additional minimum at values of the relative momen-
tum of approximately p/ p. =0.18. Itis interesting

to note that the position of this minimum does not de-
pend on the excitation energy but its depth decreases
(the absolute value increases) with increasing E.,.

4

5]
T T T

[
LI I
.
~

D,(P), 107 (MeVfm™s)

i , - E,.=10 MeV
P — E,=20 MeV
7 — E_ =30 MeV
1 3 // ]
¥ 7
/7
L | | " L | | | ) ) ) ) 1
% 05 T 15 2
P/Py

Fig. 5. Dependence of the diffusion coefficient D, (p)

on the relative momentum p/p. in the case of

excitation of a particle-hole pair for a Fermi system which
is described by the distribution function (26) for case (b).

As we can see, the behavior of both Kinetic
coefficients is not qualitatively different from the first
case (a). All comments and conclusions made for case
(a) are also valid. It should only be noted here that the
growth of the diffusion coefficient with the excitation
energy occurs somewhat more intensively.

In Fig. 7 we have shown for both cases the
dependence of the maximum value of the diffusion
coefficient D, (pg) lying on the Fermi surface on

the excitation energy E.,.

38—
3.7
3.6

3.50

D,(p,), 107 MeV'Ams)

05 10 15 20 25 30
E, (MeV)
Fig. 7. Dependence of the diffusion coefficient D, (p;)
on the excitation energy E,, of a particle-hole pair for
a momentum p = p.. The lower curve is the case (a),
the upper curve is (b).

From a comparison of the distribution (26) and the
stepwise distribution (15), we conclude that the devi-
ation in the dependencies in Fig. 4 from the dashed
line and the appearance of irregular oscillations is
obviously a manifestation of particle-hole excitation
in the Fermi system.

The calculation results for the second case (b) are
shown in Fig. 5 and Fig. 6.

20—

—_
L
T T T

i E,=10 MeV 1
i — E_ =20 MeV 1
10F — E_=30MeV ]

K,(p), 107 (MeV-fm"s)
L -

o
T

. .y
-50 0.5 1 1.5 2
P/Py-

Fig. 6. Dependence of the drift coefficient K (p) on the

relative momentum p/ p. in the case of excitation of a

particle-hole pair for a Fermi system which is described
by the distribution function (26) for case (b).

Case (a) corresponds to the lower curve, case (b)
to the upper one. These dependencies can be approxi-
mated using the expression

Dy (Pr) = Dyo(Pe)(14¢, - o +C, - EZL ), (32)

where the fitting coefficients are given in Table.

Fitting coefficients

Cases ¢, Mev™ c,, Mev~?
(@) 2.97-10° —251-107°
(b) 227-10° 3.7510°

The coefficients ¢, for both cases have close
values, but the coefficients at quadratic terms c,

have opposite signs. Thus, the quadratic dependence
of the diffusion coefficient on the excitation energy
has a directly opposite dependence in both cases.

5. Conclusions
In this paper, the properties of the kinetic diffusion

D,(p) and drift K (p) coefficients in the momen-

tum space for a cold Fermi system and also for the
case of excitation of a particle-hole pair in this system
are considered for the first time. We have used the
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fact that when integrating the expressions for the ki-
netic coefficients the stepwise distribution function
highlights certain regions in the momentum space,
that allow rewriting the twofold integral expressions
so that instead of the distribution functions, certain
limits of integration can be introduced into them. This
gives a significant acceleration in numerical calcula-
tions and increases their accuracy.

As a result of numerical calculations, it was found
that in the cold Fermi system the diffusion coefficient
D,(p) is different from zero and has a positive

maximum on the Fermi surface, at zero momentum it
is zero and at an infinitely large increase in momen-
tum it approaches zero asymptotically. The drift co-
efficient K (p) is also not zero. It has a negative

minimum and approaches zero asymptotically as the
relative momentum increases. When the momentum
decreasesto zero K (p) becomes positive and tends

to infinity. The obtained values of the coefficients
D,o(ps) and K, ,(1.2pg) are in good agreement

with the values of the corresponding quantities given
in the paper [5].

The difference from zero of the diffusion and drift
coefficients means that even in an absolutely cold
Fermi system momentum transfer processes are pos-
sible and consequently change the state. This change
will occur as quickly as possible in the region of the
Fermi surface and with distance from it the rate of

smearing of the distribution function will decrease.
In the case of excitation of a particle-hole pair two
characteristic cases are considered for three values of
the excitation energy. In general, the dependence of
D,(p) on momentum is similar to the case of the

stepwise distribution. It is also noticeable that the
higher the energy value excitation E, the larger

D,(p) except for a small region of small momenta.
The kinetic drift coefficient K (p) inside the Fermi

sphere exhibits a strong oscillating deviation from the
case of the stepwise distribution and appears as
another additional minimum. The position of this
minimum does not depend on the excitation energy
but its depth decreases (absolute value increases) with
increasing E.,.

The obtained dependencies of the kinetic diffusion
and drift coefficients in momentum space will be
useful in further studying the evolution of the
distribution function and also the processes of
collective motion dissipation using the nonlinear
diffusion equation.

Thanks to the Armed Forces of Ukraine for
providing security during this work. This work was
supported in part by the budget program “Support for
the development of priority areas of scientific
research”, the project of the Academy of Sciences of
Ukraine (Code 6541230, No. 0122U000848).

Appendix A. General transformations of integral expressions

Given the relationship between energy and momentum ¢; = pf /2m, the argument of the delta function

can be rewritten as follows

€6~ IZ (P, —Pp,) =
where it is taken into account that p =p,.

We will introduce the new variables p, —p =
(6) in the following form

Dp(|0)~—3 ()

A(p) ~ (2 7y

g and p,-

[dkda (- k)2OI oL@k’ f@+p)f(k+p)3[a’ -k}

jdkdqp(q k)—[(q k)| f(a+p) f(k+p)3(q° -k’ |

((pz p)’ (P4 —p)*), (A1)

p =k which allow one to rewrite Egs. (5) and

(A2)

(A3)

Using the spherically symmetric distribution function f(p)= f(p), p=p and the relation [9]

8[x2—a2j=

d(x—a)+o6(x+a)

we will rewrite Egs. (A2) and (A3) as

b

2|al
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Dp(p)~mjkdkjdg qudqde x

(q +k2—2chosqk)§I (q +k2—2chosqk){6(q k)+6(q+k)}

xf[\/q2+ p2+2qpcosquf[\/k2+ p2+2kpcoska, (A4)

A(p) ~ jkdkjdg qudqde x

(2 h?*s

(qcosqp kcoskp)gI (q +k% - 2chosqk){6(q k)+6(q+k)}

xf[\/q2+ p2+2qpcosqp}f[\/k2+ p2+2kpcoska. (A5)

Integrating into Egs. (A4) and (A5) over g, we obtain

~— 5 2
Dy (P) = 5 i) jk dk [dQ, f[\/k +p +2kpcoskp]

de {(1 cosqk):jj (Zk 1- cosqk)) [\/k2+p +2kpcosqp}

(1+cosqk) do (Zk (1+ cosqk)) [\/kz + p2—2kpcosqpﬂ, (A6)

A(p) =

(2 el jk“dkjdg f[\/k2+p +2kpcoska

xJ.qu {(cosqp Coskp);j (2k (1- cosqk)) [\/k2+p2+2kpcosqp]—

(cosqp+coskp) do (Zk (1+cosqk)) [\/k2+ p2—2kpcosqu. (A7)

Let us choose the direction of the z axis of the coordinate system in the direction of the vector p. Using
the addition theorem for spherical harmonics, we can write in an arbitrary spherical coordinate system

cosgk =cos6, cosO, +sin,sin®, cos(¢, + ¢, ),
cosgp = cos0,cos0, +sin6,sin®, cos(d, +¢,),
coskp = cos, cosO, +sin6, sin®, cos(¢, +¢,,).
Taking into account the spherical symmetry of the distribution functions f(p;)= f(p;) and using

cosqp = cos6,, coskp =cos6,,
we finally obtain

12 ISSN 1818-331X NUCLEAR PHYSICS AND ATOMIC ENERGY 2023 Vol.24 No.1
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Dp(p)~mjk5dkjdg f[\/k2+p + 2kpcos6, ]

de {(1 cosqk)gI (2k a- cosqk)) {\/k2+p2 +2kpcoseql+

(1+ cosqk)g (2k 1+ cosqk)) [\/k2 + p® —2kpcos6, ]} (A8)

A(p) ~ jk5dkjd9 f(\/k2+p + 2kpcoso, ]

(2

x|dQ, 1 cos8, —cos0, do 2k?(1—cosqgk) ) f | \/k? + p? + 2kpcosqgp |-
q q dQ

—[cos0, +cos0 do 2k?(1+cosqgk) ) f | \k? + p* —2kpcosqp |!. (A9)
“ “JdQ

Appendix B. Transformation of integral expressions in the case of the Gauss potential

After substituting (10) into the integral expressions (7) and (8), we get

D (p)~g M5y jksdkjdg f[\/k2+p T 2kpcos6, ]

xIqu {(1—cosqk)exp[—8k2r02 (1—cosqk)/h2] f[\/k2 +p®+2kpcosH, J+

+(1+ cosqk)exp(—8k2r02(1+ cosqk)/hzj f[\/k2 + p® —2kpcos6, J} (B1)

A(p) ~ 9 fulals jk“dkjdg f[\/k2+p + 2kpcos®, ]

xJ-qu {[coseq —c0s6, jexp[—Skzro2 (1—cosqk)/h2] f[\/kz +p* +2kpcos O, ]—

—(cos6, +cos6, |exp|—8k2r?(1+cosqk) /A% | | [k? + p? — 2kpcos, |I. (B2)
q q

We introduce the notation
cos0, = X, coso, =Y,

then

D, (p) ~ g4m2\$fk5dkjdxjdyf[«/ +p2+2kpij
[ b, Tab, (12 T ) eosto, )
><exp[—8k2r02 (1—xy—\/ 1-x%)(L- y?) cos(¢, +¢q))/h2]><

xf[,/kz +pi+ 2kpx]+(l+ xy ++/(L—x*) (L~ y?) cos(d, +(|)q))><
><exp[—8k2r02 (1+ xy +(1— x*)A - y?) cos(d, +¢q))/h2}x f [sz +p°- 2kpx]}, (B3)
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2n

A(p)~98:r6v Tk“dk[dx[dyf[,/ + p? + 2kpy qu)k jo|¢q |(x y)fw +p2+2kpr><

0 -1 -1

><exp[—8k2r02 (1— xy — (1= x?)(1—- y?) cos(d, +¢q))/h2J—(x+ y) f[«/kz +p? —2kpr><

xexp[—swr; (1+ xy + (LX) (L~ y?) cos(d, + ¢q))/h2]}.

Then

D,(p) = g ml;;\/7§ Tk"’dk.lfdledy f [,/k2 +p? +2kpyHexp[—8k2r02(l—xy)/hzj f[,/kz +p? +2kpx]><

0 -1

qu)k.[dq) (1 xy —/(1-x*)(1-y?) cos(¢, + &, ))exp(8k2r2,/(1 x*)(1-y?) /hzcos(¢k+¢ ))
+exp(—8Kk*ry (1+ xy) /7’ f[\/kz +p? —2kpx]fd<j>k Jltdq)q (1+ Xy + (1= x?)(1— y?) cos(d, +¢q))><

xexp( 81 L)W y) /1 cos(o, +4,)).
A(p) ~ g mr Ve Ik4dkjdxjdy f [\/WJX
| (x = y) £ VK4 D7+ 2k Jexp -8k (L )/
xzfdcbk zfdcbq exp 81y 1) A= y*) /1 cos(o, +8,)) -
—(x+y)f [MJ exp(~8K2rZ(L+ xy)/h? ) x
xzj:ohbk zfdd»q exp(-8k°r; L) (L— y*) /1 cos(o, +¢q))}.

To simplify, we introduce the following notation

Q2 =p°+k*+2pkx, qf, = p®+k”+2pky.

o, (K, X, y) =8K*r (1 xy)/1?,

B(k.x, y) =8kr2[(1— x*)(1- y?) /1.

Using the definition of modified Bessel functions of the first kind, we obtain for the integrals

qu) jdq)k exp( (k. x, y)cos(d, +¢k))=4n2|0(ﬁ(k, X, Y)),

fdcp jdq)kcos (6 + 0 Jexp(B(k, , y)cos(¢q+¢k))=4nzll([3(k,x, y))-

(B4)

(B5)

(B6)

(B7)
(B8)

(B9)
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Then we will finally have

D, (p) zg?%jksdkjdxjdy t(q,,)x
oo (kx V) F(@.)] @)k x )~ T A=Y Bk x ) |+

rexp(-a (. V) F (0,0 @Bl ) +T-OA-yILpkxy) || (B10)

2 6,,2 © 1 1
A(p)z%!k“dkidxidy f(a,, )x

x{(x=y) F(a,,Jexp(—o_ (%)) 1o (B(k, . ¥)) -

_(X + y) f (q—x)exp(_a+ (k9 X, Y)) IO (_B(ka X, y))} (Bll)
Taking into account the symmetry properties of the modified Bessel functions of the first kind

(B =1,B).  L(B)=-1(),

we will have
MEVE T s Faof
Dp(p)zQGT"lk dk!ldledyf(q+y)x
oo (kx V) F(@.)] @) Bk x )~ T OA= YL Bk x ) |+
rexp(-a (X V) (0.0 @Bl - YILER x|, @12)
A(p)zgg"%lk“dkjldledyf[qu'o(B(k,x,y))x

X{(X - y) fN (q+x)exp(_a7(ka X, y)) - (X + y) f (qfx)exp (—OL+ (ka X, y))} (Bls)

When integrating over the variable x in the second term in curly braces we make the replacement
X — —X. Then, taking into account the symmetries o, (k,—x,y)=oa_(k,x,y) and B(k,—x,y)=B(k,X,y),
we see that the second term is identical to the first. Therefore, we finally have

D,(p) ~ gg‘%ka’dk [ ox [ dy exp(-au(k. %, y)) F (q,) £ (a,) %
| =) 1 (Bl x Y)Y A=y, Bk x ) |, (B14)

A(p) ~ T2 [icak [ o [ dy exp(-au(k x, ) F(6,) £(a,)0x = Y)1o (BlK. . ¥)). (B15)

-1 -1

where o_(k,x,y)=a(k,X,y), d,, =0, d,, =0,.
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Appendix C. Expressions for the minimum and maximum values of integration limits

Xrax1 = Xmax.2 = Xmaxz =1

Yawes = Max(=L min(L, 2(p,), 2(pe))),
Yimax.2 = Max(=L min(L, z(p))),

Yimaxs = Max(=1 min(L, z(p,))),

Yiax.a = Max(=Lmin(L z(p,), z(pe))),

Yanas = Max(=1, min(L, z(p;))),

Yimaxs = Max(=1 min(1, z(p,))),

Xmex.7 = Xmaxs = Xmaxg = Max(=1 min(L, z(p;.))),
Y7 = Max(=Lmin(L, z(p,), z(pe ),

Yimaxs = Max(=L min(L, z(p¢.))),

Yimaxs = Max(=1 min(1, 2(p,))),

Xnax10 = Xmex11 = Xmax22 = MaX(=1,min(L, z(p,))),
Yo = MaX(=L min(L, z(p,), z(pe ),

Yimax,r = Max(=L min(L,z(pe))),

Ymex12 = Max(=1 min(L, z(p,))),

= Xmax,S = Xmax,6 = max(—:L mm(:L Z( pl)a Z( pF )))!

Xmin,l = Xmin,2 = Xmin,3 = _1’

Yring = =1

Yainz = Min(L max(-1 z(p,))),
Yaina = MIN(L max(=1 z(p,))),
X X

min4 — min4 — Xmin,4 = _11

Yiina =1,

Ymins = Min(L, max(-1 z(p,))),

Yiins = MiN(L, max(=1,z(p,))),

Xain7 = Xming = Xming = MIN(L max(=1 z(p,))),
Yoinz =1,

Yming = MiN(L max(1 2(p,))),

Yiing = Min(L max(=1 z(p,))),

Xningo = Xminar = Xminz2 = MiN(L max(=1,z(p,))),
Yiminao =1,

Yminaz = Min(L, max(-1 z(p,))),

Yainaz = MiN(L, max(-1,z(p,)))-
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