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RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION
FOR NUCLEI NEAR THE NEUTRON DRIP LINE

The present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest
include 80, #2Si, %8Ca, 8Ni, 1K, 22Ru, 2Ba, 166Sm, and *5Er. The relativistic Hartree - Bogoliubov (RHB) approach
with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree -
Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay
between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich
nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior
and energy levels. As the number of neutrons increases, the shape smoothly transitions from spherical to triaxial and then
to prolate. The axial deformation analysis confirmed the results of the triaxial deformation analysis using the RHB
method. An imbalance in the number of protons and neutrons can affect pairing energy, where extra neutrons can reduce
overall pairing energy, and protons can disrupt the nucleon pairing due to stronger Coulomb repulsion between them.
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1. Introduction

The nuclear shape can deviate from its spherical
shape, it undergoes deformation. This deformation
can be triggered by factors like the shell structure, the
presence of high spin states, and the collective
motions. In deformed nuclei, shape transition occurs
from spherical to axial or triaxial shape. The axial
deformation is an indication of whether the shape is
oblate or prolate, while in a triaxial deformation, the
nucleus has three axes of symmetry, each with va-
rying lengths. This leads to intriguing effects such as
alterations in energy levels, increased stability, and
changes in decay rates. Basically, triaxial defor-
mation of nuclei can be achieved in two ways. Firstly,
through motion, where groups of nucleons move to-
gether in a manner resulting in a deformed nucleus.
Secondly, the presence of a band occurs when a
nucleus rapidly rotates around its axis, causing elon-
gation and distortion [1].

It is well-known that studying the triaxial defor-
mation of nuclei provides insights into nuclear struc-
ture, particularly energy levels, decay rates, and
nuclear reactions. These findings hold potential for
applications in the nuclear energy and medical fields.
Various theoretical models can be used to investigate
the triaxial shape of nuclei, each with its own set of
advantages and disadvantages. For instance, the Nils-
son model, Interacting Boson Model, Hartree - Fock
- Bogoliubov (HFB) model, and Relativistic Mean
Field (RMF) model [2]. The present work will utilize
the RMF model to analyze the triaxial quadrupole
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shapes of nuclei near the neutron dripline, encom-
passing a wide range in the nuclear chart. In this
model, protons and neutrons are considered funda-
mental particles that interact with each other through
the exchange of scalar (6) and vector (@) mesons.
These mesons represent the attractive and repulsive
components of the nuclear interaction, respectively
[3]. To accurately analyze the influence of triaxial
deformation, it is necessary to expand the potential
with axial symmetry using Legendre polynomials up
to high orders. This expansion permits non-zero
values for quadrupole, octupole, and hexadecapole
moments, which characterize the triaxial shape of the
nucleus. Using RMF, extensive theoretical studies
were conducted to analyze the nuclear structure.
Koepe and Ring [4] investigated the ground state
shape of the *Mg nucleus within the framework of a
constrained three-dimensional RMF, particularly the
energy surface as a function of the quadrupole defor-
mation parameters (; and y. Lalazissis and Sharma [5]
studied the ground-state properties of some exotic
nuclei near the Z = 40 region using RMF. They also
anticipated the presence of shape coexistence in
heavy isotopes. Hirata et al. [6] studied the triaxial
deformation of some light-unstable nuclei using
RMF. Yao et al. [7] extended the RMF by including
time-odd fields and used it to study the candidate mul-
tiple chiral doublets nuclei. Yao et al. [8, 9] also
developed a structure model that employs the gene-
rator coordinate approach to blend angular-momen-
tum projected wave functions produced by con-
strained self-consistent RMF calculations for triaxial
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shapes. Lu et al. [10] developed the multidimensio-
nally-constrained RMF to study the effect of triaxia-
lity in some even-even actinide nuclei. Xue et al. [11]
studied the hyperon impurity effect on the low-lying
states of sd-shell nuclei based on RMF. Abusara et al.
[12] calculated the triaxiality softness and shape
coexistence in Mo and Ru isotopes using the relati-
vistic Hartree - Bogoliubov (RHB) model. Nabi et al.
[13] investigated the nuclear structure properties of
N =50 and 82 isotones using the RMF model. Kumar
et al. [14] investigated the shape evolution of the iso-
topic chains of shell closure Z = 8, 20, 28, and 50
using RHB. Recently, Rong et al. [15] investigated
the triaxial and octupole shapes in Zr by employing
the RHB model.

In the present work, we explore the presence of
triaxial deformation in light, medium, and heavy
nuclei located near the neutron driplines using the
RHB model. In particular, 20, #*Si, ®8Ca, ®Ni, 1%Kr,
122Ru, *?Ba, *°Sm, and *®Er nuclei, give insight into
the evolution of nuclear deformation in the neutron-
rich even-even nuclei. The evolution of nuclear
deformation is closely related to shell evolution, as
changes in deformation can be correlated with the
rearrangement of nucleons in the nuclear energy
levels. Additionally, the collective excitations include
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rotational and vibrational modes and nuclear stability.
For comparison with non-relativistic nuclear models,
which rely on axially symmetric deformation, we
have implemented the Skyrme - Hartree - Fock (SHF)
+ Bardeen - Cooper - Schrieffer (BCS) calculations
for studying the deformation-energy surfaces for the
selected neutron-rich nuclei.

The current research will be organized in the
following manner: Section 2 will provide a concise
overview of the theoretical formalism of the RHB
model employed in the present analysis. Section 3
will present and analyze the calculated results. Lastly,
Section 4 will summarize the results and conclusions
drawn from the analysis.

2. Nuclear deformation

The excitation spectra of even-even nuclei up to
approximately 2 MeV are usually explained as rota-
tions and vibrations of the nucleus. According to the
collective model framework, an even-even nucleus is
considered a homogeneous nuclear matter — a quan-
tum droplet of deformable matter. Unsurprisingly, the
greater the number of nucleons in the nucleus, the
more significant the collective effects are in that
nucleus.
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Fig. 1. The relationship between the deformation parameters f3, v, and the nuclear shape.

Based on the details shown in Fig. 1, it is possible
to depict nuclear quadrupole deformation using
symmetry arguments. The value of y ranges from 0°,
which represents a strictly prolate shape, to 60°,
which represents a purely oblate shape. Any angle
between 0 and 60° indicates a triaxial nucleus, which
lacks a distinct axis of symmetry [2]. These sextants
are generally referred to as potential energy surfaces
(PES).

3. Theoretical framework

There is a specific category of self-consistent mean-
field (SCMF) structure models that rely on relativistic
(covariant) energy density functionals. These models
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have proven to be effective in examining various
nuclear structure phenomena, and their accuracy is
comparable to the non-relativistic HFB approach that
uses Skyrme functionals or Gogny effective
interactions. As previously stated, this section will
provide a brief overview of the RHB model as it is
currently implemented in RMF. Covariant density
functional theory employs various models to depict the
nucleus. The present work uses the density-dependent
point-coupling (DD-PC1) model to perform our
calculations. The mesons are absent in this model and
thus use a zero-range interaction. It provides an
excellent description of different ground and excited
states over the entire nuclear chart. The details of each
model are discussed below.
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3.1. Lagrangian density for the point coupling models

The point-coupling models provide an alternative
method for conveying the self-consistent relativistic
mean-field framework [16]. In this model, the iso-
scalar-scalar ¢ meson, the isoscalar-vector ® meson,
and the isovector-vector p meson build the minimal
set of meson fields necessary for quantitatively
describing nuclei. An effective Lagrangian that inclu-
des the isoscalar-scalar, isoscalar-vector, and isovec-
tor-vector four-fermion interactions is given by the
following equation [17, 18]:

L :\p(iy.a—m)w—%as B) (W) (Tw)-
_%a\, (ﬁ)(\va“w)(\TIYHW)—
o ()1 w) (T, v) -

~255(0,5w)(0" 7v)- &)

where m is the nucleon’s mass and y denotes the
Dirac spinor. The four-fermion coupling constants are
stated by as, oy, and ow. The model contains the
coupling of protons to the electromagnetic field along
with the free-nucleon Lagrangian and point-coupling
interaction terms, which are given by the following
equations respectively [16]:

Ly = (iv, 8 —m)y, )
L., =la G@”G—Emi o’ —EQ L QY+
2" 2 2 "

1 1o -0 1, .1 .
+EmimHmH_ZRHU'RH +Em§pH'pu_ZF}JUF“ (3)

with the corresponding masses ms, M, m,, and €y,
R, F*"are field tensors field tensors

on = apm avo‘)u’ (4)
R =0,P0=0, P )
F,=0,A~-0,A. (6)

The derivative terms in Eq. (1) take into account the
leading effects of finite-range interactions, which are
essential for a quantitative representation of the
nuclear characteristics. The chosen point couplings'
functional form is

o (p)=a; +(b +c¢ x)e” ™, (i

where x=p/pg, , and psa represents the density of

=S,V,TV) (8)
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nucleons in symmetric nuclear matter at saturation.
For the current analysis, we will utilize the triaxial
RHB [16, 19], which features a separable pairing
model. The calculations with constraints are carried
out by applying restrictions on the axial and triaxial
mass quadrupole moments. The PES analysis, which
involves studying the quadrupole deformation para-
meter, is conducted using the quadratic-constrained
method [20]. The quadratic constraint approach
makes use of an unrestricted variant of the function
denoted by:

where H represents the total energy, and QAZH is the

I

> + 2 Cau (<Qzu> — 0Oy )2 , (8)

n=0,2

expectation value of the mass quadrupole operators
Qyp=2Z%-X2-Y?%and Q,, = X2-Y2 (9)

Q2u IS the constrained value of the multipole moment,
and C,, is the corresponding stiffness constant [20].
To achieve a self-consistent solution, the quadratic
constraint  introduces an  additional  force

term Z . HQ211 to the system, where

A, =2C,, (QZH —qu). Such a term is necessary to

force the system to a point different from the statio-
nary point in deformation space. In general, the self-
consistent solution and constrained values g, coin-
cide only at the stationary point for the quadrupole
moments (Q.). The augmented Lagrangian [21]
method has been implemented to resolve the conver-
gence problem of the self-consistent procedure that
diverges when the stiffness constant C,, is increased.
These operators are related to the axially-symmetric
deformation [ and triaxiality y as follows [22]

> \)on +2Q22 ,» (20)

167‘C 3 A(r A1/3)

y = arctan «/5%

20

11)

3.2. SHF + BCS calculations

The SCMF based on SHF plus BCS calculations is
designed to describe the structure of nuclei and study
the shape evolution and transitional in nuclear density
shapes, where the pairing correlation has been
considered. SHF is the best method for anticipating
closed-shell nuclei's total binding and single-particle
energies [22]. Also, it is a valuable tool because this
force is central and has zero-range interactions [23].
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The building block of a mean-field theory is a set
of single-particle wave functions v, together with
fractional occupation amplitudes v, i.e., [24]

(Vo 0, 0=1,...,Q}, (12)

where Q denotes the size of the active single-particle
space and occupation amplitudes are limits to the
interval 0<wv,<l. The complementary non-

occupation amplitude is u, = \1- V2.
The BCS many-body state composed of these
ingredients is

|0) = H(ua +, 0 ot )|0>,

>0

(13)

where |0) is the particle-vacuum state, o the

creation operator for a Fermion in state y,, and o the
time-reversed partner to state o. The local nucleon
density is defined as [24]

Pe(F) =Y, Tl (F.s)

The total energy is composed as

(14)

Eww=T+E + ECoulomb + Epair + Ecm! (15)

tot Skyrme

where Esiyrme 1S the Skyrme energy, and Ecoutoms 1S the
Coulomb energy

2 r r 2/ a\a
Ec :%J‘dVdV,%ppl‘()_fdv 3%(%}3'3:/3

(16)

and the pairing energy is

1 2
Epair = Z z Vpair,q IdV |(t:q| |:1_ P :|a (17)
ge{p.n} pO,pair

where dV stands for the volume element in full three-
dimensional space, e is the elementary charge with
e’ = 1.43989 MeV/c-fm, and &, is the pairing density

& (F) =2 > WU, 0w (F.8)w, (F,5), (18)

aeq S

where w, stands for a soft cut-off of pairing space.
The s € + 1 variables indicate the spinor component of
the wave functions. The pairing energy contains the
parameter popair that regulates the balance between
volume and surface pairing. Nuclear deformation is
defined as the deviation from the spherical symmetry
about the center of mass (c.m.) which is expressed by
the electric quadrupole moment. Thus, the most
important moments are the center of mass moments
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) (19)

where ““type” can refer to proton from p, neutron
from pn isoscalar or total from the total density
p = pp + pn, Or isovector moment from the isovector
density pr =1 = (N/A)pp — (Z/A)pn.
The anisotropic combinations can be quantified in
terms of the spherical quadrupole moments
QZm,type = IdvrzYZmptype (F - I:aztype )‘ (20)
The axial symmetry allows non-vanishing quadrupole
moments only for m = 0. It is often convenient to

express them as a dimensionless quadrupole moment
(quadrupole deformation parameter)

_4m Qy _
3 AR?

Bao (21)

All wavefunctions and fields are defined on an
axial coordinate-space grid. The axial coordinates and
their relation to Cartesian coordinates are

r=yxt+y? z=z,

where r stands for the axial coordinate expressing the
distance of the space point to the symmetry axis.
Axially symmetric objects, like densities and
potentials, depend only on the r and z. r and z are both
represented on an equidistant grid:

(22)

r<—>{r0,...,rNr}, r,=vAr, (23)

z (—){(Z_NZ...Z_l),ZO,..., Zy, } 7, =0 Az, (24)

where Ar and Az are numerical parameters for the grid
spacing. Along the z-axis, the filled grid from —N; to
+N; allows reflection-asymmetric nuclear configura-
tions or from O for +N, plus exploiting reflection sym-
metry to reconstruct the whole grid. Densities and
potentials are axially symmetric functions f(r, z) and
trivially represented as f(rr, z,z) on the grid. A single-
particle wavefunction has a richer structure with
angular dependence and spin. It is represented as [24]

Wa(+) (rUr Z,, )exp(imaq)) 25

Yo = _ .
v, )(rUr,zUZ)exp(l(mu+1)(l))

where m, is the z-component of orbital angular

momentum of the upper spin component with k, = m,

+ 1/2 being then the z-component of total z angular

momentum.
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In the previous section, we gave an overview of
the formalisms used. Further details can be found in
the References.

4, Results and discussions

In our current investigation, we have conducted a
thorough analysis of the axial and triaxial nuclear
deformation for a set of neutron-dripline nuclei
including 20, “°Si, %Ca, ®Ni, ™Kr, ??Ru, ?Ba,
186Sm, and "®Er. The results obtained from the triaxi-
ally deformed RMF model provide an essential
insight into our research and play a crucial role as one
of the fundamental degrees of freedom. Its signifi-

60 BE(MeV) 60

-163.0
-164.7

-166.5
0

cance is evident in various phenomena such as
nuclear fission, nuclear chirality, and wobbling mo-
tion. As previously mentioned, triaxial deformation
can be characterized by the asymmetry of the nucleus
in three different directions, giving rise to complex
nuclear behaviors. Fig.2 presents self-consistent
RHB triaxial quadrupole binding-energy maps of the
selected dripline nuclei in the B-y plane using
DD-PC1 parameterization. The step size for B2 is 0.05
and 5° for y. It is clear that when y equals 0°, the
structure is axial prolate, while at 60°, it becomes
oblate. The 0° <y < 60° values give us the triaxial
shapes.
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Fig. 2. The triaxial quadrupole energy surfaces obtained using the triaxially deformed RMF calculations for
280, 425j, %BCa, ONj 199K, 122Ry, 12Bg, ¥8Sm, and "®Er neutron-rich nuclei in the B-y plane (0° <vy<60").

(See color Figure on the journal website.)

The energy maps depicted in Fig. 2 vividly illu-
strate the triaxial deformation of dripline nuclei. The
maps demonstrate the gradual transition from spheri-
cal neutron closed-shell nuclei to oblate and shape
coexistence and finally to strongly prolate deformed
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nuclei. By analyzing our results depicted in Figs. 2
and 3, we can explain the shape of each nucleus based
on its axial and triaxial deformations. The current cal-
culations for axial deformation were compared with
HFB calculations using the Gogny interaction [25].
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The comparison showed a strong correspondence
with the overall trends observed in this study. Addi-
tionally, they were also compared in the Table with
the ground state deformation values of Moller et al.

-1208

-1316

[26], which are based on the finite-range droplet mac-
roscopic model and the folded-Yukawa single-parti-
cle microscopic model. Examining these values shows
a good agreement with the data from Moller et al.
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Fig. 3. The calculated PES as a function of quadrupole deformation parameter 3, obtained using HF + BCS axial
calculation with Skyrme interaction (blue line) for 280, 42Si, 58Ca, ®Ni 1K, 122Ry, 152Ba, 1%6Sm, and "®Er neutron-rich
nuclei in comparison with HFB calculations with Gogny interaction. The contours join points on the surface with the
same energy. (See color Figure on the journal website.)

Comparison of current 2 and BE with those from Moller et al. [26]

Nucleus B2 equilibrium B2 equilibrium BE, MeV BE, MeV
present work [26] present work [26]
%0 0.012 0.000 166.118 166.82
428i —0.309 —0.313 308.3100 313.99
8Ca 0.000 0.001 446.8711 453.450
®ONi 0.000 0.000 635.4481 647.38
100K r —0.303 0.342 797.7160 815.19
122Ry —0.151 —0.124 975.0439 993.28
15283 0.252 0.249 1204.383 1225.37
166Sm 0.301 0.297 1309.852 1332.43
18gr 0.251 0.278 1390.8757 1414.69
ISSN 1818-331X SJIEPHA ®I3VKA TA EHEPTETUKA 2024 T.25 Ne3 233
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Upon inspection of the contour plots, it is
evident that the nucleus 20 has a spherical shape,
with B and y equal to 0. This behavior is also
emphasized in the axial symmetric potential energy
curve in Fig. 3. The nuclear shape of *’Si is different
from 220. This nucleus has a magic number, N = 28,
that requires a strong spin-orbit interaction [27]. The
ground state is localized around the oblately
deformed energy minimum at (f, y) = (0.35, 60°).
Although there is no local minimum at the spherical
shape, the energy of the spherical state is relatively
lower than the deformed states, and the shell gap was
observed to disappear gradually. According to the
triaxial and axial PESs shown in Figs. 2 and 3, it can
be inferred that ®Ca and ®Ni nuclei, which have a
single-shell closure, exhibit a spherical shape with
values of B =y = 0. The contour plot for the PES of
10K r nucleus interestingly shows a sharp transition
from a prolate ground state to an oblate one. The
occurrence of a triaxial shape transition can be
attributed to the competition between different
nuclear forces and energy considerations. The
nucleus initially has a prolate shape in the ground
state, which is energetically favorable due to the
arrangement of nucleons and the dominant nuclear
forces acting within the nucleus. However, when the
excitation energy increases, quantum shell effects
emerge, and nucleons rearrange themselves. This
rearrangement can favor a different deformation,
which causes the nucleus to shift from its prolate
ground state to an oblate configuration.

Let’s focus specifically on the *?Ru nucleus that
shows different deformation behavior. As shown in
Figs 2 and 3, the PES of **Ru is almost spherical,
and the rising hill is pushing it towards the right,
making it more axial (prolate). According to the
analysis of the PES, assuming triaxial deformation
Fig. 2, °Ba isotopes display prolate deformation at
their absolute minima. In the axial deformation Fig.
3, the prolate solution is more profound than the
oblate one. Consequently, for this particular nucleus,
it is clear that the prolate solution is the absolute
minimum. As the neutron number increases, the
energy of the oblate solution decreases, and it
approaches the energy of the prolate solution. The
same behavior appears in the %Sm nucleus,
increasing the depth of both prolate oblate and the
development of a pronounced prolate deformation,
much more rigid regarding the y degree of freedom.
Similar behavior is predicted in *8Er nucleus, where
the shape coexistence appears also. The local energy
minimum is located at (B, y)=(0.32,5% in the
prolate deformed region, which is obviously higher
than the prolate deformed minimum. In the case
when axial symmetry is assumed Fig. 3, rapid
transitions appeared between strongly prolate
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deformed minima to oblate minimum, in clear
indication of the shape coexistence, which matches
the behavior in the triaxial deformation.

In the following section, we will focus on the
nuclei that exhibit significant nuclear deformation,
which is noticeable from the previous Figures. For
this purpose, the distribution of protons, neutrons,
neutron Kinetic densities, and neutron pairing
potential in terms of energy will be analyzed. Fig. 4
shows the axial neutron and proton density
corresponding to a local minimum on the PEC for a
10K nucleus using the HF + BCS method. The
oblate deformation is clearly seen, where the
contours of proton and neutron densities reveal
unsymmetric  patterns, indicating an unequal
distribution of neutrons and protons, emphasizing
the existence of nuclear deformations. Furthermore,
the central region in the neutron density suggests
high density where neutrons are tightly packed
together, forming a dense core. In contrast, proton
density contours in the same region indicate slightly
lower density than neutron ones. This pattern stems
from the significant difference between the number
of neutrons and protons, which is reflected in the
distribution of nucleons within the nucleus and its
shapes. Although the neutron density is high in the
central nucleus region, we cannot necessarily
assume that the neutron's kinetic density will be
equally high. The relationship between the mass
density and kinetic density of neutrons is not always
directly proportional. Various factors, such as the
nuclear structure and interactions between nucleons,
influence the kinetic energy distribution of neutrons
in a nucleus. These factors can lead to fluctuations
in the density of neutron Kinetic energy even in areas
with high neutron mass density. Generally, pairing
energy is more vital in nuclei with even protons and
neutrons than in nuclei with an odd number of
protons or neutrons, known as the pairing effect.
Based on the neutron pairing potential, it is obvious
that in the central region, the neutron pairing
potential is relatively weak. This could demonstrate
that neutron pairs in this region undergo weaker
attractive interaction compared to other regions in
the nucleus. The red-colored arc-shaped regions
indicate a higher neutron pairing potential. This
suggests that neutron pairs experience a stronger
attractive interaction in this area, resulting in lower
energy states for these paired neutrons. These
regions are surrounded by a yellow color, which
could indicate a distinct region in the nucleus where
the neutron pairing potential behaves differently
than its surroundings. The contrast with the
surrounding yellow color suggests that the neutron
pairing potential in this region is significantly
higher.
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Fig. 4. The neutron, proton, neutron pairing, and neutron kinetic energy for > minima in 1®Kr nucleus.
(See color Figure on the journal website.)

For '*2Ba, Fig. 5, the axial neutron density contour
plot typically displays a prolate shape with the highest
density at the center of the nucleus, gradually decrea-
sing towards the edges. In the central region, the pro-
ton density plot differs slightly from the neutron one
due to the influence of the nucleus's electromagnetic
forces. The most exciting feature can be noticed in the
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neutron pairing potential. The neutron pairing poten-
tial displays a unique characteristic. It promotes the
existence of an even number of neutrons, resulting in
nuclear structures with an even number of neutrons
being more stable than those with an odd number. The
colors of the couture plot help us more imaginatively
grasp the relative behavior of the neutron pairing
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Fig. 5. The neutron, proton, neutron pairing, and neutron kinetic energy for 2 minima in 152Ba nucleus.

(See color Figure on the journal website.)

potential. The broadening prolate shape, with four red
regions at the upper and lower corners, surrounded by
yellow and green regions, paints a vivid picture of the
neutron pairing potential. The presence of red regions
at the upper and lower corners indicates areas of high
neutron pairing energy. This suggests strong pairing
interactions occur in those regions, resulting in
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greater stability and coherence of neutron pairs. The
surrounding yellow and green regions, on the other
hand, represent areas with lower pairing energy.
These regions may indicate weaker pairing interac-
tions, where the neutron pairs are less stable or tightly
bound.
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Fig. 6. The neutron, proton, neutron pairing, and neutron kinetic energy for B, minima in 1%6Sm nucleus.
(See color Figure on the journal website.)

In Fig. 6, we illustrate the variation of axial neu-
tron and proton density corresponding to a prolate lo-
cal minimum on the PEC for '%®Sm nucleus. In the
neutron density plot, we can observe two small verti-
cal red spots in the central area, indicating a higher
concentration of neutrons. This could be due to a lo-
calized concentration of neutrons in this region. The
concentration of neutrons decreases gradually, for-
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ming a transitional zone. Moving outward from the
red spots, we encounter thin orange-yellow prolate re-
gions indicating a moderate neutron density. These
regions represent areas where the neutron concentra-
tion is slightly lower than the central red spots but still
higher than the cyan and blue regions. The concentra-
tion of neutrons gradually decreases, forming a tran-
sitional zone. The density contrast between neutrons
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Fig. 7. The neutron, proton, neutron pairing, and neutron kinetic energy for B, minima in "8Er nucleus.
(See color Figure on the journal website.)

and protons is most strikingly evident in the nucleus’s
central region. As previously explained, the neutron's
density reflects its mass distribution within a given
space. Meanwhile, the kinetic density of a neutron re-
veals how its Kinetic energy is distributed within that
space. These two measures are separate and can show
varying patterns within the nucleus. The most essen-
tial and noteworthy behavior in selected neutron-rich
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nuclei is neutron pairing potential, which can be
tracked by comparing the evolution of its shapes. The
imbalance in the number of protons and neutrons in
neutron-rich heavy nuclei can cause an odd imba-
lance. This imbalance can affect the pairing energy,
as the pairing force decreases with increasing num-
bers of neutrons. When extra neutrons are in the
nucleus, they can combine, further reducing the ove-
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rall pairing energy. Furthermore, increasing the num-
ber of protons in neutron-rich heavy nuclei can dis-
rupt the pairing of nucleons due to the stronger
Coulomb repulsion between the protons.

This behavior is also confirmed in Fig. 7 of Y"°Er
nucleus, where the regions of high energies gradually
decrease to lower ones. Also, it can be noticed that the
broadening prolate shapes clearly appeared in the
neutron and proton densities, which are primarily due
to the interplay of nuclear potential and the pairing
correlations. The pairing interaction causes nucleons
to align along the nucleus's long axis, producing a
prolate shape. This alignment is due to the interplay
between the pairing interaction and the mean-field
potential.

5. Conclusions

In conclusion, the results of this study provide
valuable information and shed light on the triaxial and
axial deformation of the neutron-rich heavy nuclei
near the drip line. Through rigorous data analysis, we

have uncovered insightful patterns and correlations
contributing to our understanding of pairing potential
energy and deformation in such heavy nuclei, which
have significant implications and pave the way for
future research. The magic numbers suggest that
nuclei have a spherical shape. However, in the case of
the 2*Si nucleus (with Z = 14 and N = 28), there is a
coexistence of shapes due to the interaction between
shell structure, particle interactions, and nuclear
forces. The shape of the nucleus is still affected by the
nucleons' collective behavior and energy levels. For
neutron-rich heavy nuclei near the dripline, their
shapes smoothly transition from spherical to triaxial
and then prolate around [, values ranging from 0.2 to
0.4. The SHF + BCS mean-field method was used for
axial deformation analysis, which confirmed our
RHB method results for triaxial deformation analysis.
An imbalance in protons and neutrons can affect
pairing energy, where the extra neutrons can reduce
overall pairing energy, and the protons can disrupt
nucleon pairing due to stronger Coulomb repulsion
between protons.
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TPUAKCIAJIBHA JTE®OPMAIIS SIJIEP TIOBJIMU3Y JIIHII HEUTPOHHOI HECTABLJIbHOCTI
3A JOIIOMOI'OIO AHAJII3Y PEJIATUBICTCBKOI'O CEPEJIHBOI'O ITOJIA

Jane mociiKeHHs MPUCBIYCHO AedopManii HeHTpOHHO-30araueHnx saep mooau3y JiHil HeHTPOHHOI HecTablTFHO-
cri. PosrysnyTi sinpa srimodarots 220, 42Si, %8Ca, 8ONi, 100K, 122Ru, 152Ba, 1%6Sm i "8Er. Jlns mociimxeHHs TpuakciaibHol
nedopmariii BUKOPHCTOBYETBCSl pensiTHBICTChKMH Meron Xaptpi - boromo6osa (RHB) 3 edektuBHMM TOUKOBHM
3B’S13KOM, 1110 3aJIEXKUTh BiJl TYCTHHH, a JJIsl aHaJl3y akciajabpHol Aedopmaltii BUKopuctoByeThest Metoa Ckipma - Xaprpi
- ®oka + bappaina - Kynepa - Hlpiddepa. JocimkeHHS Maio Ha METi 3pO3yMITH 3B’ 130K MiX SICPHUMH CHUIIAMH, B3a€-
MOJII€I0 YaCTUHOK i 000JIOHKOBOIO CTPYKTYPOIO, 00 OTPUMATH YSBY NPO YHIKaJbHY HOBEAIHKY OaraTux HeWTpOHaMHU
sinep. HeszBakaroun Ha Te, 110 11l siApa MICTSATh MaridHi 4ucina, Ha iXHIo (JOopMy Bce IIe BIUIMBA€E KOJIEKTHBHA MTOBEIHKA
HYKJIOHIB Ta piBHI eHeprii. 31 30IbIIEHHAM KUIBKOCTI HEHTPOHIB (hopMa IUIaBHO MEPEXOIUThH BiJ CPepHYHOI 1O TpH-
akcialbHOi, a MOTIM JO BHTATHYTOI. AHami3 akcianpHOi AedopMarii miaTBepANB pe3ysbTaTH aHAi3y TpHaKCiaabHOT
nedopmarii meromom RHB. Jluc6anxanc y KiTBKOCTI IPOTOHIB 1 HEHTPOHIB MOXe BIUIMHYTH Ha CHEPTIiIO CIIAPIOBAHHS, 1€
JIOZIATKOBI HEUTPOHHM MOXKYTh 3MEHILIUTH 3arajbHy €HEprilo CIaproBaHH:], a IIPOTOHH MOXKYTh MOPYIINTH CIIApIOBAaHHS
HYKJIOHIB Yepe3 CHIIbHIIIE KyJTOHIBCHKE BiIITOBXYBAaHHS MK HAMHU.

Kniouosi crosa: penarusicTcbke cepente moie, Xaptpi - @ok + bapain - Kymep - Hlpiddep, TpusicHa nedopmarris,
HEWTPOHHA KpanejJbHULs, KOJIEKTUBHUN PyX.
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