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RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION 

FOR NUCLEI NEAR THE NEUTRON DRIP LINE 
 

The present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest 
include 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm, and 176Er. The relativistic Hartree - Bogoliubov (RHB) approach 
with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree - 
Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay 
between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich 
nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior 
and energy levels. As the number of neutrons increases, the shape smoothly transitions from spherical to triaxial and then 
to prolate. The axial deformation analysis confirmed the results of the triaxial deformation analysis using the RHB 
method. An imbalance in the number of protons and neutrons can affect pairing energy, where extra neutrons can reduce 
overall pairing energy, and protons can disrupt the nucleon pairing due to stronger Coulomb repulsion between them.  

Keywords: relativistic mean-field, Hartree - Fock + Bardeen - Cooper - Schrieffer, triaxial deformation, neutron 
dripline, collective motion. 
 

1. Introduction 
 

The nuclear shape can deviate from its spherical 

shape, it undergoes deformation. This deformation 

can be triggered by factors like the shell structure, the 

presence of high spin states, and the collective 

motions. In deformed nuclei, shape transition occurs 

from spherical to axial or triaxial shape. The axial 

deformation is an indication of whether the shape is 

oblate or prolate, while in a triaxial deformation, the 

nucleus has three axes of symmetry, each with va-

rying lengths. This leads to intriguing effects such as 

alterations in energy levels, increased stability, and 

changes in decay rates. Basically, triaxial defor-

mation of nuclei can be achieved in two ways. Firstly, 

through motion, where groups of nucleons move to-

gether in a manner resulting in a deformed nucleus. 

Secondly, the presence of a band occurs when a 

nucleus rapidly rotates around its axis, causing elon-

gation and distortion [1]. 

It is well-known that studying the triaxial defor-

mation of nuclei provides insights into nuclear struc-

ture, particularly energy levels, decay rates, and 

nuclear reactions. These findings hold potential for 

applications in the nuclear energy and medical fields. 

Various theoretical models can be used to investigate 

the triaxial shape of nuclei, each with its own set of 

advantages and disadvantages. For instance, the Nils-

son model, Interacting Boson Model, Hartree - Fock 

- Bogoliubov (HFB) model, and Relativistic Mean 

Field (RMF) model [2]. The present work will utilize 

the RMF model to analyze the triaxial quadrupole 
 

shapes of nuclei near the neutron dripline, encom-

passing a wide range in the nuclear chart. In this 

model, protons and neutrons are considered funda-

mental particles that interact with each other through 

the exchange of scalar (σ) and vector (ω) mesons. 

These mesons represent the attractive and repulsive 

components of the nuclear interaction, respectively 

[3]. To accurately analyze the influence of triaxial 

deformation, it is necessary to expand the potential 

with axial symmetry using Legendre polynomials up 

to high orders. This expansion permits non-zero 

values for quadrupole, octupole, and hexadecapole 

moments, which characterize the triaxial shape of the 

nucleus. Using RMF, extensive theoretical studies 

were conducted to analyze the nuclear structure. 

Koepe and Ring [4] investigated the ground state 

shape of the 24Mg nucleus within the framework of a 

constrained three-dimensional RMF, particularly the 

energy surface as a function of the quadrupole defor-

mation parameters β2 and γ. Lalazissis and Sharma [5] 

studied the ground-state properties of some exotic 

nuclei near the Z = 40 region using RMF. They also 

anticipated the presence of shape coexistence in 

heavy isotopes. Hirata et al. [6] studied the triaxial 

deformation of some light-unstable nuclei using 

RMF. Yao et al. [7] extended the RMF by including 

time-odd fields and used it to study the candidate mul-

tiple chiral doublets nuclei. Yao et al. [8, 9] also 

developed a structure model that employs the gene-

rator coordinate approach to blend angular-momen-

tum projected wave functions produced by con-

strained self-consistent RMF calculations for triaxial 
 

©  A. A. Alzubadi, S. M. Aldulaimi, 2024 

https://jnpae.kinr.kyiv.ua/
https://doi.org/10.15407/jnpae2024.03.228


RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2024  Т. 25  № 3 229 

shapes. Lu et al. [10] developed the multidimensio-
nally-constrained RMF to study the effect of triaxia-
lity in some even-even actinide nuclei. Xue et al. [11] 
studied the hyperon impurity effect on the low-lying 
states of sd-shell nuclei based on RMF. Abusara et al. 
[12] calculated the triaxiality softness and shape 
coexistence in Mo and Ru isotopes using the relati-
vistic Hartree - Bogoliubov (RHB) model. Nabi et al. 
[13] investigated the nuclear structure properties of 
N = 50 and 82 isotones using the RMF model. Kumar 
et al. [14] investigated the shape evolution of the iso-
topic chains of shell closure Z = 8, 20, 28, and 50 
using RHB. Recently, Rong et al. [15] investigated 
the triaxial and octupole shapes in 96Zr by employing 
the RHB model. 

In the present work, we explore the presence of 
triaxial deformation in light, medium, and heavy 
nuclei located near the neutron driplines using the 
RHB model. In particular, 28O, 42Si, 58Ca, 80Ni, 100Kr, 
122Ru, 152Ba, 166Sm, and 176Er nuclei, give insight into 
the evolution of nuclear deformation in the neutron-
rich even-even nuclei. The evolution of nuclear 
deformation is closely related to shell evolution, as 
changes in deformation can be correlated with the 
rearrangement of nucleons in the nuclear energy 
levels. Additionally, the collective excitations include 

rotational and vibrational modes and nuclear stability. 
For comparison with non-relativistic nuclear models, 
which rely on axially symmetric deformation, we 
have implemented the Skyrme - Hartree - Fock (SHF) 
+ Bardeen - Cooper - Schrieffer (BCS) calculations 
for studying the deformation-energy surfaces for the 
selected neutron-rich nuclei. 

The current research will be organized in the 
following manner: Section 2 will provide a concise 
overview of the theoretical formalism of the RHB 
model employed in the present analysis. Section 3 
will present and analyze the calculated results. Lastly, 
Section 4 will summarize the results and conclusions 
drawn from the analysis. 

 

2. Nuclear deformation 
 

The excitation spectra of even-even nuclei up to 
approximately 2 MeV are usually explained as rota-
tions and vibrations of the nucleus. According to the 
collective model framework, an even-even nucleus is 
considered a homogeneous nuclear matter – a quan-
tum droplet of deformable matter. Unsurprisingly, the 
greater the number of nucleons in the nucleus, the 
more significant the collective effects are in that 
nucleus. 

 

 
Fig. 1. The relationship between the deformation parameters β, γ, and the nuclear shape. 

 

Based on the details shown in Fig. 1, it is possible 

to depict nuclear quadrupole deformation using 

symmetry arguments. The value of γ ranges from 0⁰, 

which represents a strictly prolate shape, to 60⁰, 

which represents a purely oblate shape. Any angle 

between 0 and 60⁰ indicates a triaxial nucleus, which 

lacks a distinct axis of symmetry [2]. These sextants 

are generally referred to as potential energy surfaces 

(PES). 
 

3. Theoretical framework 
 

There is a specific category of self-consistent mean-
field (SCMF) structure models that rely on relativistic 
(covariant) energy density functionals. These models 

have proven to be effective in examining various 
nuclear structure phenomena, and their accuracy is 
comparable to the non-relativistic HFB approach that 
uses Skyrme functionals or Gogny effective 
interactions. As previously stated, this section will 
provide a brief overview of the RHB model as it is 
currently implemented in RMF. Covariant density 
functional theory employs various models to depict the 
nucleus. The present work uses the density-dependent 
point-coupling (DD-PC1) model to perform our 
calculations. The mesons are absent in this model and 
thus use a zero-range interaction. It provides an 
excellent description of different ground and excited 
states over the entire nuclear chart. The details of each 
model are discussed below. 

triaxi
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3.1. Lagrangian density for the point coupling models 
 

The point-coupling models provide an alternative 

method for conveying the self-consistent relativistic 

mean-field framework [16]. In this model, the iso-

scalar-scalar σ meson, the isoscalar-vector ω meson, 

and the isovector-vector ρ meson build the minimal 

set of meson fields necessary for quantitatively 

describing nuclei. An effective Lagrangian that inclu-

des the isoscalar-scalar, isoscalar-vector, and isovec-

tor-vector four-fermion interactions is given by the 

following equation [17, 18]:  
 

( ) ( )( )( )
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where m is the nucleon’s mass and ψ denotes the 

Dirac spinor. The four-fermion coupling constants are 

stated by αs, αv, and αtv. The model contains the 

coupling of protons to the electromagnetic field along 

with the free-nucleon Lagrangian and point-coupling 

interaction terms, which are given by the following 

equations respectively [16]: 
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with the corresponding masses mσ, mω, mρ, and Ωµν, 

Rµν, F
µν are field tensors field tensors 

 

 ,     =   −   (4) 
 

 ,R    
=   −   (5) 

 

 .F A A   
=  −  (6) 

 

The derivative terms in Eq. (1) take into account the 

leading effects of finite-range interactions, which are 

essential for a quantitative representation of the 

nuclear characteristics. The chosen point couplings' 

functional form is 
 

 ( ) ( ) ( ), , , d xi
i i i ia b c x e i S V TV

−
  = + + =  (8) 

 

where / satx =   , and ρsat represents the density of 

nucleons in symmetric nuclear matter at saturation. 

For the current analysis, we will utilize the triaxial 

RHB [16, 19], which features a separable pairing 

model. The calculations with constraints are carried 

out by applying restrictions on the axial and triaxial 

mass quadrupole moments. The PES analysis, which 

involves studying the quadrupole deformation para-

meter, is conducted using the quadratic-constrained 

method [20]. The quadratic constraint approach 

makes use of an unrestricted variant of the function 

denoted by:  
 

 ( )
2

2 2 2
0,2

ˆˆ ,H C Q q  
=

+ −  (8) 

 

where Ĥ  represents the total energy, and 2Q̂   is the 

expectation value of the mass quadrupole operators 
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20
ˆ 2Q Z X Y= − −  and 2 2

22Q̂ X Y= −  (9) 
 

q2µ is the constrained value of the multipole moment, 

and C2µ is the corresponding stiffness constant [20]. 

To achieve a self-consistent solution, the quadratic 

constraint introduces an additional force  

term 20,2
Q̂ =

  to the system, where 

( )2 2 22 .ˆC Q q    = −  Such a term is necessary to 

force the system to a point different from the statio-

nary point in deformation space. In general, the self-

consistent solution and constrained values q2µ coin-

cide only at the stationary point for the quadrupole 

moments ⟨Q2μ⟩. The augmented Lagrangian [21] 

method has been implemented to resolve the conver-

gence problem of the self-consistent procedure that 

diverges when the stiffness constant C2µ is increased. 

These operators are related to the axially-symmetric 

deformation β and triaxiality γ as follows [22] 
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ˆ
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3.2. SHF + BCS calculations 
 

The SCMF based on SHF plus BCS calculations is 

designed to describe the structure of nuclei and study 

the shape evolution and transitional in nuclear density 

shapes, where the pairing correlation has been 

considered. SHF is the best method for anticipating 

closed-shell nuclei's total binding and single-particle 

energies [22]. Also, it is a valuable tool because this 

force is central and has zero-range interactions [23]. 



RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2024  Т. 25  № 3 231 

The building block of a mean-field theory is a set 

of single-particle wave functions ψα together with 

fractional occupation amplitudes υα, i.e., [24] 
 

  , , 1, ..., ,     =   (12) 

 

where Ω denotes the size of the active single-particle 

space and occupation amplitudes are limits to the 

interval 0 ≤ υα ≤1. The complementary non-

occupation amplitude is 
21 .u = −   

The BCS many-body state composed of these 

ingredients is 
 

 ( )αα α
α 0

υ 0 ,u +




+ = +    (13) 

 

where 0 is the particle-vacuum state, +
  the 

creation operator for a Fermion in state ψα, and ᾱ the 

time-reversed partner to state α. The local nucleon 

density is defined as [24] 
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The total energy is composed as 
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where ESkyrme is the Skyrme energy, and ECoulomb is the 

Coulomb energy 
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and the pairing energy is 
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where dV stands for the volume element in full three-

dimensional space, e is the elementary charge with 

e2 = 1.43989 MeV/c∙fm, and q  is the pairing density  
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where wα stands for a soft cut-off of pairing space. 

The s ϵ ± 1 variables indicate the spinor component of 

the wave functions. The pairing energy contains the 

parameter ρ0,pair that regulates the balance between 

volume and surface pairing. Nuclear deformation is 

defined as the deviation from the spherical symmetry 

about the center of mass (c.m.) which is expressed by 

the electric quadrupole moment. Thus, the most 

important moments are the center of mass moments 

 
( )

( )
,type

type

type

dVr r
R

dV r

 
=
 

 (19) 

 

where “'type” can refer to proton from ρp neutron 

from ρn isoscalar or total from the total density  

ρ = ρp + ρn, or isovector moment from the isovector 

density ρT = 1 = (N/A)ρp – (Z/A)ρn. 

The anisotropic combinations can be quantified in 

terms of the spherical quadrupole moments 
 

 ( )2
2 , 2 .m type m type typeQ dVr Y r R=   −  (20) 

 

The axial symmetry allows non-vanishing quadrupole 

moments only for m = 0. It is often convenient to 

express them as a dimensionless quadrupole moment 

(quadrupole deformation parameter) 
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All wavefunctions and fields are defined on an 

axial coordinate-space grid. The axial coordinates and 

their relation to Cartesian coordinates are 
 

 
2 2 ,  ,r x y z z= + =  (22) 

 

where r stands for the axial coordinate expressing the 

distance of the space point to the symmetry axis. 

Axially symmetric objects, like densities and 

potentials, depend only on the r and z. r and z are both 

represented on an equidistant grid: 
 

  0, ..., , ,Nr
r r r r r =    (23) 

 

 ( ) 1 0... , ,..., , ,N Nz z
z z z z z z z − − =   (24) 

 

where ∆r and ∆z are numerical parameters for the grid 

spacing. Along the z-axis, the filled grid from –Nz to 

+Nz allows reflection-asymmetric nuclear configura-

tions or from 0 for +Nz plus exploiting reflection sym-

metry to reconstruct the whole grid. Densities and 

potentials are axially symmetric functions f(r, z) and 

trivially represented as f(rυr, zυz) on the grid. A single-

particle wavefunction has a richer structure with 

angular dependence and spin. It is represented as [24] 
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where mα is the z-component of orbital angular 

momentum of the upper spin component with kα = mα 

+ 1/2 being then the z-component of total z angular 

momentum. 
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In the previous section, we gave an overview of 

the formalisms used. Further details can be found in 

the References. 
 

4. Results and discussions 
 

In our current investigation, we have conducted a 

thorough analysis of the axial and triaxial nuclear 

deformation for a set of neutron-dripline nuclei 

including 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 
166Sm, and 176Er. The results obtained from the triaxi-

ally deformed RMF model provide an essential 

insight into our research and play a crucial role as one 

of the fundamental degrees of freedom. Its signifi-

cance is evident in various phenomena such as 

nuclear fission, nuclear chirality, and wobbling mo-

tion. As previously mentioned, triaxial deformation 

can be characterized by the asymmetry of the nucleus 

in three different directions, giving rise to complex 

nuclear behaviors. Fig. 2 presents self-consistent 

RHB triaxial quadrupole binding-energy maps of the 

selected dripline nuclei in the β-γ plane using 

DD-PC1 parameterization. The step size for β2 is 0.05 

and 5⁰ for γ. It is clear that when γ equals 0⁰, the 

structure is axial prolate, while at 60⁰, it becomes 

oblate. The 0⁰ < γ < 60⁰ values give us the triaxial 

shapes. 

 

 
Fig. 2. The triaxial quadrupole energy surfaces obtained using the triaxially deformed RMF calculations for 
28O, 42Si, 58Ca, 80Ni 100K, 122Ru, 152Ba, 166Sm, and 176Er neutron-rich nuclei in the β-γ plane (0 60 ).    

(See color Figure on the journal website.) 
 

The energy maps depicted in Fig. 2 vividly illu-

strate the triaxial deformation of dripline nuclei. The 

maps demonstrate the gradual transition from spheri-

cal neutron closed-shell nuclei to oblate and shape 

coexistence and finally to strongly prolate deformed 

nuclei. By analyzing our results depicted in Figs. 2 

and 3, we can explain the shape of each nucleus based 

on its axial and triaxial deformations. The current cal-

culations for axial deformation were compared with 

HFB calculations using the Gogny interaction [25]. 
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The comparison showed a strong correspondence 

with the overall trends observed in this study. Addi-

tionally, they were also compared in the Table with 

the ground state deformation values of Moller et al. 

[26], which are based on the finite-range droplet mac-

roscopic model and the folded-Yukawa single-parti-

cle microscopic model. Examining these values shows 

a good agreement with the data from Moller et al. 
 

   

   

   
Fig. 3. The calculated PES as a function of quadrupole deformation parameter β2 obtained using HF + BCS axial 

calculation with Skyrme interaction (blue line) for 28O, 42Si, 58Ca, 80Ni 100K, 122Ru, 152Ba, 166Sm, and 176Er neutron-rich 

nuclei in comparison with HFB calculations with Gogny interaction. The contours join points on the surface with the 

same energy. (See color Figure on the journal website.) 
 

Comparison of current β2 and BE with those from Moller et al. [26] 
 

Nucleus 
β2 equilibrium 

present work 

β2 equilibrium 

[26] 

BE, MeV 

present work 

BE, MeV 

[26] 
28O   0.012   0.000 166.118 166.82 
42Si −0.309 −0.313 308.3100 313.99 
58Ca   0.000   0.001 446.8711 453.450 
80Ni   0.000   0.000 635.4481 647.38 

100Kr −0.303   0.342 797.7160 815.19 
122Ru −0.151 −0.124 975.0439 993.28 
152Ba   0.252   0.249 1204.383 1225.37 
166Sm   0.301   0.297 1309.852 1332.43 
176Er   0.251   0.278 1390.8757 1414.69 
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Upon inspection of the contour plots, it is 

evident that the nucleus 28O has a spherical shape, 

with β and γ equal to 0. This behavior is also 

emphasized in the axial symmetric potential energy 

curve in Fig. 3. The nuclear shape of 42Si is different 

from 28O. This nucleus has a magic number, N = 28, 

that requires a strong spin-orbit interaction [27]. The 

ground state is localized around the oblately 

deformed energy minimum at (β, γ) = (0.35, 60⁰). 

Although there is no local minimum at the spherical 

shape, the energy of the spherical state is relatively 

lower than the deformed states, and the shell gap was 

observed to disappear gradually. According to the 

triaxial and axial PESs shown in Figs. 2 and 3, it can 

be inferred that 58Ca and 80Ni nuclei, which have a 

single-shell closure, exhibit a spherical shape with 

values of β = γ = 0. The contour plot for the PES of 
100Kr nucleus interestingly shows a sharp transition 

from a prolate ground state to an oblate one. The 

occurrence of a triaxial shape transition can be 

attributed to the competition between different 

nuclear forces and energy considerations. The 

nucleus initially has a prolate shape in the ground 

state, which is energetically favorable due to the 

arrangement of nucleons and the dominant nuclear 

forces acting within the nucleus. However, when the 

excitation energy increases, quantum shell effects 

emerge, and nucleons rearrange themselves. This 

rearrangement can favor a different deformation, 

which causes the nucleus to shift from its prolate 

ground state to an oblate configuration. 

Let’s focus specifically on the 122Ru nucleus that 

shows different deformation behavior. As shown in 

Figs 2 and 3, the PES of 122Ru is almost spherical, 

and the rising hill is pushing it towards the right, 

making it more axial (prolate). According to the 

analysis of the PES, assuming triaxial deformation 

Fig. 2, 152Ba isotopes display prolate deformation at 

their absolute minima. In the axial deformation Fig. 

3, the prolate solution is more profound than the 

oblate one. Consequently, for this particular nucleus, 

it is clear that the prolate solution is the absolute 

minimum. As the neutron number increases, the 

energy of the oblate solution decreases, and it 

approaches the energy of the prolate solution. The 

same behavior appears in the 166Sm nucleus, 

increasing the depth of both prolate oblate and the 

development of a pronounced prolate deformation, 

much more rigid regarding the γ degree of freedom. 

Similar behavior is predicted in 186Er nucleus, where 

the shape coexistence appears also. The local energy 

minimum is located at (β, γ) = (0.32, 5⁰) in the 

prolate deformed region, which is obviously higher 

than the prolate deformed minimum. In the case 

when axial symmetry is assumed Fig. 3, rapid 

transitions appeared between strongly prolate 

deformed minima to oblate minimum, in clear 

indication of the shape coexistence, which matches 

the behavior in the triaxial deformation. 

In the following section, we will focus on the 

nuclei that exhibit significant nuclear deformation, 

which is noticeable from the previous Figures. For 

this purpose, the distribution of protons, neutrons, 

neutron kinetic densities, and neutron pairing 

potential in terms of energy will be analyzed. Fig. 4 

shows the axial neutron and proton density 

corresponding to a local minimum on the PEC for a 
100Kr nucleus using the HF + BCS method. The 

oblate deformation is clearly seen, where the 

contours of proton and neutron densities reveal 

unsymmetric patterns, indicating an unequal 

distribution of neutrons and protons, emphasizing 

the existence of nuclear deformations. Furthermore, 

the central region in the neutron density suggests 

high density where neutrons are tightly packed 

together, forming a dense core. In contrast, proton 

density contours in the same region indicate slightly 

lower density than neutron ones. This pattern stems 

from the significant difference between the number 

of neutrons and protons, which is reflected in the 

distribution of nucleons within the nucleus and its 

shapes. Although the neutron density is high in the 

central nucleus region, we cannot necessarily 

assume that the neutron's kinetic density will be 

equally high. The relationship between the mass 

density and kinetic density of neutrons is not always 

directly proportional. Various factors, such as the 

nuclear structure and interactions between nucleons, 

influence the kinetic energy distribution of neutrons 

in a nucleus. These factors can lead to fluctuations 

in the density of neutron kinetic energy even in areas 

with high neutron mass density. Generally, pairing 

energy is more vital in nuclei with even protons and 

neutrons than in nuclei with an odd number of 

protons or neutrons, known as the pairing effect. 

Based on the neutron pairing potential, it is obvious 

that in the central region, the neutron pairing 

potential is relatively weak. This could demonstrate 

that neutron pairs in this region undergo weaker 

attractive interaction compared to other regions in 

the nucleus. The red-colored arc-shaped regions 

indicate a higher neutron pairing potential. This 

suggests that neutron pairs experience a stronger 

attractive interaction in this area, resulting in lower 

energy states for these paired neutrons. These 

regions are surrounded by a yellow color, which 

could indicate a distinct region in the nucleus where 

the neutron pairing potential behaves differently 

than its surroundings. The contrast with the 

surrounding yellow color suggests that the neutron 

pairing potential in this region is significantly 

higher. 
 
 
 
 



RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2024  Т. 25  № 3 235 

 

 
Fig. 4. The neutron, proton, neutron pairing, and neutron kinetic energy for β2 minima in 100Kr nucleus. 

(See color Figure on the journal website.) 
 

For 152Ba, Fig. 5, the axial neutron density contour 

plot typically displays a prolate shape with the highest 

density at the center of the nucleus, gradually decrea-

sing towards the edges. In the central region, the pro-

ton density plot differs slightly from the neutron one 

due to the influence of the nucleus's electromagnetic 

forces. The most exciting feature can be noticed in the 

neutron pairing potential. The neutron pairing poten-

tial displays a unique characteristic. It promotes the 

existence of an even number of neutrons, resulting in 

nuclear structures with an even number of neutrons 

being more stable than those with an odd number. The 

colors of the couture plot help us more imaginatively 

grasp the relative behavior of the neutron pairing 
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Fig. 5. The neutron, proton, neutron pairing, and neutron kinetic energy for β2 minima in 152Ba nucleus. 

(See color Figure on the journal website.) 
 

potential. The broadening prolate shape, with four red 
regions at the upper and lower corners, surrounded by 
yellow and green regions, paints a vivid picture of the 
neutron pairing potential. The presence of red regions 
at the upper and lower corners indicates areas of high 
neutron pairing energy. This suggests strong pairing 
interactions occur in those regions, resulting in 

greater stability and coherence of neutron pairs. The 
surrounding yellow and green regions, on the other 
hand, represent areas with lower pairing energy. 
These regions may indicate weaker pairing interac-
tions, where the neutron pairs are less stable or tightly 
bound. 
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Fig. 6. The neutron, proton, neutron pairing, and neutron kinetic energy for β2 minima in 166Sm nucleus. 

(See color Figure on the journal website.) 
 

In Fig. 6, we illustrate the variation of axial neu-

tron and proton density corresponding to a prolate lo-

cal minimum on the PEC for 166Sm nucleus. In the 

neutron density plot, we can observe two small verti-

cal red spots in the central area, indicating a higher 

concentration of neutrons. This could be due to a lo-

calized concentration of neutrons in this region. The 

concentration of neutrons decreases gradually, for-

ming a transitional zone. Moving outward from the 

red spots, we encounter thin orange-yellow prolate re-

gions indicating a moderate neutron density. These 

regions represent areas where the neutron concentra-

tion is slightly lower than the central red spots but still 

higher than the cyan and blue regions. The concentra-

tion of neutrons gradually decreases, forming a tran-

sitional zone. The density contrast between neutrons 
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Fig. 7. The neutron, proton, neutron pairing, and neutron kinetic energy for β2 minima in 176Er nucleus. 

(See color Figure on the journal website.) 
 

and protons is most strikingly evident in the nucleus’s 

central region. As previously explained, the neutron's 

density reflects its mass distribution within a given 

space. Meanwhile, the kinetic density of a neutron re-

veals how its kinetic energy is distributed within that 

space. These two measures are separate and can show 

varying patterns within the nucleus. The most essen-

tial and noteworthy behavior in selected neutron-rich 

nuclei is neutron pairing potential, which can be 

tracked by comparing the evolution of its shapes. The 

imbalance in the number of protons and neutrons in 

neutron-rich heavy nuclei can cause an odd imba-

lance. This imbalance can affect the pairing energy, 

as the pairing force decreases with increasing num-

bers of neutrons. When extra neutrons are in the 

nucleus, they can combine, further reducing the ove-



RELATIVISTIC MEAN FIELD ANALYSIS OF TRIAXIAL DEFORMATION 

ISSN 1818-331X   ЯДЕРНА ФІЗИКА ТА ЕНЕРГЕТИКА  2024  Т. 25  № 3 239 

rall pairing energy. Furthermore, increasing the num-

ber of protons in neutron-rich heavy nuclei can dis-

rupt the pairing of nucleons due to the stronger 

Coulomb repulsion between the protons. 

This behavior is also confirmed in Fig. 7 of 176Er 

nucleus, where the regions of high energies gradually 

decrease to lower ones. Also, it can be noticed that the 

broadening prolate shapes clearly appeared in the 

neutron and proton densities, which are primarily due 

to the interplay of nuclear potential and the pairing 

correlations. The pairing interaction causes nucleons 

to align along the nucleus's long axis, producing a 

prolate shape. This alignment is due to the interplay 

between the pairing interaction and the mean-field 

potential. 
 

5. Conclusions 
 

In conclusion, the results of this study provide 

valuable information and shed light on the triaxial and 

axial deformation of the neutron-rich heavy nuclei 

near the drip line. Through rigorous data analysis, we 

have uncovered insightful patterns and correlations 

contributing to our understanding of pairing potential 

energy and deformation in such heavy nuclei, which 

have significant implications and pave the way for 

future research. The magic numbers suggest that 

nuclei have a spherical shape. However, in the case of 

the 24Si nucleus (with Z = 14 and N = 28), there is a 

coexistence of shapes due to the interaction between 

shell structure, particle interactions, and nuclear 

forces. The shape of the nucleus is still affected by the 

nucleons' collective behavior and energy levels. For 

neutron-rich heavy nuclei near the dripline, their 

shapes smoothly transition from spherical to triaxial 

and then prolate around β2 values ranging from 0.2 to 

0.4. The SHF + BCS mean-field method was used for 

axial deformation analysis, which confirmed our 

RHB method results for triaxial deformation analysis. 

An imbalance in protons and neutrons can affect 

pairing energy, where the extra neutrons can reduce 

overall pairing energy, and the protons can disrupt 

nucleon pairing due to stronger Coulomb repulsion 

between protons. 
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ТРИАКСІАЛЬНА ДЕФОРМАЦІЯ ЯДЕР ПОБЛИЗУ ЛІНІЇ НЕЙТРОННОЇ НЕСТАБІЛЬНОСТІ 

ЗА ДОПОМОГОЮ АНАЛІЗУ РЕЛЯТИВІСТСЬКОГО СЕРЕДНЬОГО ПОЛЯ 
 

Дане дослідження присвячено деформації нейтронно-збагачених ядер поблизу лінії нейтронної нестабільно-

сті. Розглянуті ядра включають 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm і 176Er. Для дослідження триаксіальної 

деформації використовується релятивістський метод Хартрі - Боголюбова (RHB) з ефективним точковим 

зв’язком, що залежить від густини, а для аналізу аксіальної деформації використовується метод Скірма - Хартрі 

- Фока + Бардіна - Купера - Шріффера. Дослідження мало на меті зрозуміти зв’язок між ядерними силами, взає-

модією частинок і оболонковою структурою, щоб отримати уяву про унікальну поведінку багатих нейтронами 

ядер. Незважаючи на те, що ці ядра містять магічні числа, на їхню форму все ще впливає колективна поведінка 

нуклонів та рівні енергії. Зі збільшенням кількості нейтронів форма плавно переходить від сферичної до три-

аксіальної, а потім до витягнутої. Аналіз аксіальної деформації підтвердив результати аналізу триаксіальної 

деформації методом RHB. Дисбаланс у кількості протонів і нейтронів може вплинути на енергію спарювання, де 

додаткові нейтрони можуть зменшити загальну енергію спарювання, а протони можуть порушити спарювання 

нуклонів через сильніше кулонівське відштовхування між ними. 

Ключові слова: релятивістське середнє поле, Хартрі - Фок + Бардін - Купер - Шріффер, тривісна деформація, 

нейтронна крапельниця, колективний рух. 
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