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ROLE OF BROWNIAN MOTION AND NÉEL RELAXATIONS 

IN MÖSSBAUER SPECTRA OF MAGNETIC LIQUIDS 
 

The absorption cross-section of Mössbauer radiation in magnetic liquids is calculated, taking into consideration both 

translational and rotational Brownian motion of magnetic nanoparticles as well as stochastic reversals of their 

magnetization in the absence of an external magnetic field. The role of Brownian motion in ferrofluids is considered in 

the framework of the diffusion theory, while for the magnetorheological fluids with large nanoparticles, it is done with 

the aid of Langevin’s approach. For stochastic rotation, we derived the equation analogous to Langevin’s one and found 

the corresponding correlation function. In both cases, simple rotational correlation functions are obtained in the 

approximation of small rotations during the lifetime of the excited Mössbauer nuclei. Influence of the Néel’s relaxations 

is considered in the framework of the Blume - Tjon model. 
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1. Introduction 
 

Suspensions of magnetic nanoparticles (MNPs) 

attract great attention due to their numerous 

applications in technique, medicine, and biology [1 - 

17]. It is provided by the large magnetic moment of 

MNPs, which allows to manipulate them by mode-

rate magnetic fields. Depending on the dimensions 

of MNPs, they can be divided into magnetorheo-

logical fluids formed by MNPs with a diameter of 

the order of 1 µm and ferrofluids with dimensions of 

MNPs 10  nm (see, e.g., [3]). When the magneto-

rheological liquids are subjected to the magnetic 

field, their viscosity enormously increases, so that 

these liquids may even transform into a solid body. 

This property gives the possibility to use such 

suspensions in dampers, brakes, and clutches [4]. 

Ferrofluids are widely used in computers, loud-

speakers, semiconductors, motion controllers, sen-

sors, ink-jet printers, seals, bearings, stepper motors, 

etc. [1 - 8]. 

In medicine, ferrofluids are employed in hyper-

thermia [9], for drug delivery to local ill regions of 

the body, and as contrast agents in magnetic 

resonance imaging (MRI) [10]. Recently, a much 

more progressive method of magnetic particle 

imaging (MPI) was developed for visualizing MNPs 

in humans and animals [11 - 15]. The advantage of 

MPI is that it is more fast, quantitative, and sensitive 

than MRI. 

Note that MNPs are always coated with a poly-

mer shell to prevent their agglomeration in a solu-

tion. The commercial ferrofluids are predominantly 

based on magnetite Fe3O4 particles. 

Usually, MNPs have a single easy-magnetization 

axis   and their magnetization M  tends to be 

oriented along it or in the opposite direction, keeping 

the constant value | |M  The anisotropy potential 

energy of such particles in the absence of external 

magnetic fields, versus the angle   between M  and 

axis   is represented by two potential wells at 

= 0  and   separated by the potential barrier: 
 

 2= sin ,effE K V   (1) 

 

where effK  denotes the effective magnetic aniso-

tropy, V  the particle volume. The magnetization, 

oscillating in one of the potential wells, from time to 

time gets sufficient energy to jump over the barrier 

into the neighboring well. In the symmetric potential 

(1) the magnetization reversals occur with equal 

rates =1/ Nw   on both sides, where the relaxation 

time N  is determined by Néel’s formula [16] 

 

 
0= exp

eff

N

K V

kT

 
   

 
 (2) 

 

with the constant factor 
9 13 1

0 10 10 s− − −  −  (see, 

e.g., [17]). 

The effectiveness of the MNPs in different 

applications strongly depends on such parameters as 

the Nèel relaxation time and Brownian rotational 

relaxation time of MNPs, dependent on the tempe-

rature and viscosity of the carrier fluid. The Möss-

bauer  spectroscopy  is  the most powerful method to 
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determine such characteristics. Soon after the disco-

very, the Mössbauer effect was applied for the inve-

stigation of the Brownian motion of nanoparticles in 

liquids [18 - 26]. The foundation of these studies has 

been laid by Singwi and Sjölander [25], who 

expressed the absorption cross-section of Mössbauer 

rays by chaotically moving nanoparticles in terms of 

the Van Hove auto-correlation function. Having 

described the translational motion of the Brownian 

particle by diffusion equation, they found that the 

broadening of the Mössbauer line linearly depends 

on the ratio of temperature T  and viscosity of the 

liquid .  This conclusion was supported experimen-

tally for small nanoparticles [18 - 24]. But somewhat 

later for large particles it was observed considerable 

curvature of the line, which was explained theo-

retically in Refs. [23, 24], where the Brownian 

motion was described by means of the stochastic 

Langevin’s equation. 

For the first time, the effect of the Brownian 

rotation on the shape of the Mössbauer line was 

analyzed by Zatovskiĭ [26], who found the most 

strict solution for the absorption cross-section. In 

Ref. [27] this task has been solved in small-angle 

approximation, taking into account that during the 

lifetime of the excited Mössbauer nucleus, the root-

mean-square angle of the Brownian rotation is 

usually much less than unity. Such simple calcu-

lations were expanded to the case of ellipsoidal 

Brownian particles in Ref. [28]. Another somewhat 

more cumbersome approach to the problem of 

Brownian rotation has been developed in Ref. [29]. 

Previously some aspects of Mössbauer spectra of 

ferrofluids were studied in the theoretical paper [30], 

whereas Landers et al. [17] seem to be the first who 

observed the Mössbauer spectra in ferrofluids. 

Interesting experimental results have been also 

reported in Refs. [31 - 34]. 

In this paper, we research in much more detail 

the impact of Brownian rotation together with 

translational diffusion on the shape of Mössbauer 

spectra of MNPs. In particular, for the first time, the 

Brownian rotation of large nanoparticles is regarded 

by utilizing Langevin’s formalism in full analogy 

with the translational motion. 

For ferrofluids, we shall apply a simplest model 

of the Nèel relaxations, when the magnetization 

vector of the particle ( )tM  makes stochastic jumps 

between the values M  and −M  along the easy axis 

.  Respectively, the magnetic field at the nucleus, 

being antiparallel to ( ),tM  takes the values 

0 0( ) = ( )t f th h  with ( ) = 1.f t   The magnetic field 

0h  causes the splitting of the nuclear sublevels 

giving rise to a Zeeman sextet. Throughout the 

paper, we suppose that there is no external magnetic 

field as well there is no interaction between MNPs 

so that jumps of the magnetization proceed with 

equal probability in both directions. For generality, 

we adopt that along the field 0h  there is an electric 

field gradient, which ensures a quadrupole splitting 

of the lines. This model was previously applied to 

calculations of Mössbauer spectra by Blume and 

Tjon [35]. 
 

2. Basic equations 
 

In order to separate the translational and 

rotational motion we first introduce the coordinate 

frame , ,x y z  with the origin in the center of the 

particle and axis z  along the beam of incident 

-quanta. In addition, we introduce the frame , ,    

with an axis   along the easy-magnetization axis of 

the particle. The position of the Mössbauer nucleus 
57 Fe in the laboratory frame , ,L L Lx y z  is determi-

ned by the radius-vector 
 

 = ,+ +X R r u  (3) 
 

where the vector R  indicates the position of the 

center of the Brownian particle, r  specifies the 

equilibrium position of the nucleus in the frame 

, , ,x y z  and u  is the displacement from this site 

(Fig. 1). 
 

 
Fig. 1. Scheme illustrating motion of the Mössbauer 

nucleus 57Fe together with the spherical Brownian 

particle, whose easy-magnetization axis is labeled by .  

The vector R indicates the position of this particle in the 

laboratory frame, r the equilibrium position of the nucleus 

inside the particle. (See color Figure on the journal 

website.) 
 

Random reversals of the magnetization M  and 

the Brownian motion are independent processes. 

Therefore the absorption cross-section of -quanta 

with the energy =E  and wave vector κ  by the 

Mössbauer nucleus 57Fe, embedded in the Brownian 

particle, may be written as [30] 
 

20( ) =
2

Wa a
a e

− 
    
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( ) /2

0
( , ) ( , ),

i t t
a a

B N

dt
Re e G t G t

 − −
  κ κ  (4) 

 

where 0  is the resonant value of the absorption 

cross-section of -quanta by a fixed nucleus in the 

absence of the hyperfine structure, =a aE   and 

a  are the energy and width of the resonant level of 

the absorbing nucleus, 
2W

ae
−

 is the Debye - Waller 

factor, ( , )BG tκ  denotes the Fourier-transform of the 

classical self-correlation function for the Brownian 

motion, ( , )NG tκ  the correlation function for the 

Néel relaxations of magnetization. 

This cross-section is to be averaged over the 

energy distribution of -quanta emitted by a source 

without recoil 
 

 
2 2

1
( ) = ,

2 ( ) ( / 2)

e
e

e e

w E
E E s



 − − + 
 (5) 

 

where = /es vE c  denotes the Doppler shift for a 

source, moving with the velocity v  relative to an 

absorber. Then if Ee = Ea experimentally measured 

cross-section takes the form 
 

20( ) =
2

Wa a
a s e

− 
   

 

 
/ /2

0

0
( , ) ( , ),

ist t

B N

dt
Re e G t G t

 −
  κ κ  (6) 

 

where 0 = e a  +   means the width observed when 

any broadening due to Brownian motion or Néel 

relaxations is absent. 

For spherical particles the translational and 

rotational Brownian motions are separated, so that 
 

 ( , ) = ( , ) ( , ),t r

B s sG t G t G tκ κ κ  (7) 
 

where ( , )t

sG tκ  and ( , )r

sG tκ  are the Fourier trans-

forms of the self-correlation functions for transla-

tional motion and rotation, respectively. 
 

3. Correlation functions 
 

In this section, we shall give the correlation 

functions for the translational and rotational Brow-

nian motion of spherical nanoparticles in a liquid, 

provided by corresponding diffusion equations. 

Besides, the correlator responsible for the Néel 

relaxations of the MNPs magnetization, derived in 

Ref. [35], will be reproduced below in a somewhat 

changed form. 
 

3.1. Translational Brownian motion 
 

For the translational Brownian motion, described 

by a simple diffusion equation, the self-correlation 

function has the form [25] 
 

 
3/2 2( , ) = (4 | |) exp[ / 4 | |].t

s t tG t D t R D t− −R  (8) 
 

Here we suppose that at the initial moment, = 0t  

the particle is located in the origin of the laboratory 

frame. The Fourier transform of the function (8) 

reads 
 

 
2( , ) = exp( | |).t

s tG t D t−κ  (9) 
 

By using this equation Singwi and Sjolander [25] 

found that the Mössbauer line is described by the 

Lorentzian curve having the width 
 

 0= ,t  +  (10) 
 

where the line broadening is related to the transla-

tional diffusion coefficient tD  by 
 

 
2= 2 .t tD   (11) 

 

For spherical particles 
 

 = ,
6

t

h

kT
D

a
 (12) 

 

where T  and   denote the temperature and viscosi-

ty coefficient of the liquid, ha  the hydrodynamic 

radius of the nanoparticle, which equals the sum of 

the core radius ca  and the thickness of its polymer 

coating .d  
 

3.2. Brownian rotation 

 

The mean-square angle of rotation 
2

r  of the 

Brownian particle in a liquid during time t  is deter-

mined by Einstein’s formula [36] 
 

 
2 = 2 ,r rD t  (13) 

 

depending on the rotation diffusion coefficient 
 

 
3

= ,
8

r

h

kT
D

a
 (14) 

 

where ha  is the hydrodynamic radius of the particle. 

Let us estimate the 
2

r  for rotation during the 

time t  of the order of the lifetime 

= / =141N a   ns for 57Fe. We take the para-

meters of the experiment [17], which correspond to 

maximal value of 
2

r : = 7ha  nm and = 22.5  cp 

(viscosity of the 70 % glycerol solution at 

= 293T  K). In this case 
2 34 10 .r

−    In all other 

measurements [17], corresponding to lower tempera-
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tures and larger particles 
2

r  is much less. Thus, we 

can really treat the Brownian rotation in the small-

angle approximation. 

The Fourier-transform of the rotational corre-

lation function is calculated with the aid of the 

probability density 0( , ; )r

sG tn n  of the Brownian 

rotation from 0n  to n  during time t: 
 

 
( )

0
0( , ) = ( , ; ) ,

i rr r

s sG t d G t e
−


κ n n

κ n n n  (15) 

 

where orientation of the unit vectors 0 = (0) / rn r  

and = ( ) /t rn r  in the frame , ,x y z  are determined 

by the spherical angles 0 0,   and ,  , respectively. 

The function 0( , ; )r

sG tn n  is looked for as a solution 

of the rotational diffusion equation [37] 
 

 
2 2

2 22

1
= cot

sin

r r r r

s s s s
r

G G G G
D

t

    
+  + 

     
 (16) 

 

with the initial condition 
 

 0 0( , ;0) = ( ).r

sG  −n n n n  (17) 
 

The probability of all possible events equals unity, 

therefore the probability density is normalized as 
 

 
2

0
0 0

sin ( , ; ) = 1.r

sd d G t
 

    n n  (18) 

 

Let us introduce one more frame , ,x y z    with 

the corresponding basis unit vectors 1 2 3' , ' , ' ,e e e  

whose vector 3'e  coincides with 0.n  The orientation 

of the vector n  in this frame is determined by the 

spherical angles , .   It is convenient also to intro-

duce the deviation vector 0= . −n n n  As <<1  it 

lies in the plane x y   and its modulus | | . n  In 

such small-angle approximation, Eq. (16) takes the 

form 
 

 
2 2

2 2 2

1 1
= ,

r r r r

s s s s
r

G G G G
D

t

    
+ + 

      
 (19) 

 

which coincides with the equation, which describes 

the translational diffusion of the particle on the 

plane, written in polar coordinates. The latter 

includes the radial coordinate ,  varying from 0 to 

 1, and the azimuth angle ,  varying from 0 to 

2 .  Hence, a solution of Eq. (19), satisfying the 

constraints (17) and (18), is 

 

1 In the small-angle approximation the upper border   

for   may be replaced by .  

 
2

0

1
( , ; ) = exp .

4 | | 4 | |

r

s

r r

G t
D t D t

 
− 

  
n n  (20) 

 

Instead of the polar coordinates, ,   one can 

employ the Cartesian variables 1  and 2 ,  which 

denote the rotation angles around the vectors 
'

1e  and 
'

2 ,e  respectively. Then 
2 2 2

1 2 =  +  and the expres-

sion (20) becomes 
 

 
2 2

1 2
0

1
( , ; ) = exp ,

4 | | 4 | |

r

s

r r

G t
D t D t

  +
− 

  
n n  (21) 

 

where the angles i  vary from −  to .  Calcula-

ting the mean-square rotation angle 
2 2

r i     with 

the aid of Eq. (21), we arrive at Einstein’s formula 

(13), which confirms the correctness of our theory. 

In order to find the Fourier transform of 

0( , ; )r

sG tn n  we express the components , ,x y zn n n  

of the unit vector n  in spherical angles: 
 

 = sin cos , = sin sin , = cos .x y zn n n     (22) 

 

Simple calculations give 
 

 2 2 2 22
0 0 0= ( ) = ( ) ( )sin  − +  −n  (23) 

 

and 
 

 0 0 0( ) = sin ( ).r−   −κ r r  (24) 
 

Applying (23), we transform the rotational corre-

lation function (20) to 
 

0

1
( , ; ) =

4 | |

r

s

r

G t
D t




n n  

 

 
2 22

0 0 0( ) ( )sin
exp exp .

4 | | 4 | |r rD t D t

   −  −
 − −   

   
 (25) 

 

Then by inserting (24) and (25) into (15) one obtains 
 

 2 2 2
0( , ) = exp | | .sin

r

s rG t D r t −  κ  (26) 

 

3.3. Magnetization relaxations 
 

Following Ref. [35] we suppose that there is an 

electric field gradient along the magnetic field 0h  at 

the nucleus 57Fe. The constant field 0h  gives rise to 

Zeeman splitting of sublevels 1/ 2, gM  and 3 / 2, eM  

of the ground and excited nuclear states, respec-

tively. Here gM  and eM  are the projections of the 

nuclear spin on the direction 0.h  In the fluctuating 
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field 0( )th  the Mössbauer spectrum is described by 

the correlator ( , )NG tκ  [35] 
 

6
2

=1

( , ) = ( )exp[ (3 15 / 4) / ]N j e

j

G t J iQ M t − − κ  

 

 
0

exp ( ) ,
t

j
av

i f t dt          (27) 

 

where (...)av  implies the stochastic averaging, 

( ) = 1,f t   the parameter Q  determines a quad-

rupole shift of the lines, the factors 
= ( )j M M

g e
J →   are 

relative intensities of the Zeeman sextet: 
 

2
1= 1/2 3/2 6=1/2 3/2

3
( ) = ( ) = (1 ),cos

16
J J− →− →  +   

 

 2
2= 1/2 1/2 5=1/2 1/2

1
( ) = ( ) = ,sin

4
J J− →− →    (28) 

 

2
3= 1/2 1/2 4=1/2 1/2

1
( ) = ( ) = (1 ),cos

16
J J− → →−  +   

 

depending on the angle   between the wave vector 

of -quanta κ  and magnetization .+M  Here the 

lines of the Zeeman sextet are enumerated in the 

order of growing energy. In the absence of external 

magnetic fields, when the particles are oriented 

randomly, the averaged relative intensities of the 

lines = ( )i iJ J   are 
 

1 6 2 5 3 4

1 1 1
= = , = = , = = .

4 6 12
J J J J J J     (29) 

 

Then the stochastic averaging results in [35] 
 

0
exp ( ) =

t

j
av

i f t dt         

 

 1= (cos sin )exp( ),j j jx wt x x wt wt−+ −  (30) 

 

with parameters 
 

2 1/2=[( / ) 1] ,j jx w −  

 

 0= = ( ) / ,j eg g g e e Ng M g M h  −   (31) 

 

depending on the nuclear magneton N  and gyro-

magnetic ratios ,gg  eg  of the ground and excited 

states, respectively. From now on, for brevity, we 

shall omit the exponential in Eq. (27), associated 

with the quadrupole splitting. Once 0,Q   in all 

equations below the Doppler shift s  should be 

replaced by 
2(3 15 / 4).es Q M− −  In addition, the iso-

mer shift is assumed to be zero. 
 

4. Absorption cross-section 
 

Substituting (9), (26), and (30) into (6) one finds 

the absorption cross-section 
 

6
20

=1

( ) =
4

Wa a
a j

j

s e Re J
− 

   

 

 [ 1
/ 2j j eff

i i

x s x w i

 
−   + +  

 (32) 

 

1 ].
/ 2j j eff

i i

x s x w i

 
+ +   − +  

 

 

It has an effective width 
 

 = ,eff r N  +  +   (33) 

 

where   is defined by Eq. (10), the broadening due 

to Néel’s relaxations = 2 ,N w  the rotational 

broadening, depending on the coordinates of the 

Mössbauer nucleus 57Fe, 
 

 
2 2 2

0( ) = 2 .sinr r rD r    r  (34) 
 

When the Brownian broadenings = = 0t r   our 

Eq. (32) differs from the corresponding result of 

Ref. [35] only in some unessential details. 

For uniform distribution of these nuclei in nano-

particles the averaged cross-section is defined by 
 

 
2

0 03 0 0

3
( ) = ( )sin .

2

a
c

a a

c

s r dr s d
a



       (35) 

 

Having substituted here the expression (32) we 

introduce new variables 0= cos   and = / cr a  to 

obtain 
 

6 1
2 20

0
=1

3
( ) =

4

Wa
a j

j

s e Re J d− 
      

 

 1 ( ) 1 ( ) ,j j

j j

i i
I I

x x

+ −
    

 −  + +        
     

 (36) 

 

where ( )jI    stands for the integral 

 

 
1

20
( ) =

( ) ( )
j

j

d
I

A B



 −



  

 (37) 

 

with 



A. Ya. DZYUBLIK, I. E. ANOKHIN, V. Yu. SPIVAK 

246 ISSN 1818-331X   NUCLEAR PHYSICS AND ATOMIC ENERGY  2024  Vol. 25  No. 3 

 
2 2 2 2 2= = (3 / 8) ( / )r c t c hB i D a i a a     (38) 

 

and 
 

 = ( ) / 2 .j j NA s x w i B  + + +  (39) 

 

Trivial integration gives 
 

 ( )1
( ) = / .j j

j

I Arth B A
A B

 


  (40) 

 

In the case of slow relaxations, when <<| |jw   

and respectively >> 1jx  as well as ,j jx w    the 

cross-section reduces to Zeeman’s pattern with 

broadened lines: 
 

6
20

=1

( ) =
2

Wa a
a j

j

s e Re J
− 

    

 

 ( )
1

2

0

1
/ ,j

j

d Arth B A
A B

    (41) 

 

where B  is again determined by the formula (38), 

while jA  taking the form 

 

 = ( ) / 2 .j j NA s i B−  +  +  +  (42) 

 

In the opposite limit of very rapid relaxations as 

>>| |jw   the nucleus only feels an average zero 

magnetic field. In this case, the cross-section 

collapses to a single line 2 
 

12 20

0

3
( ) =

2

Wa a
a s e Re d

− 
     

 

 ( )1
/ ,Arth B A

AB
  (43) 

 

where B  remains the same, while A  becomes 
 

 = / 2 .A s i B+  +  (44) 
 

Note also that the same expression (43) describes the 

Mössbauer spectra of nonmagnetic Brownian 

particles. 

The formulas considerably simplify, if we 

average only ( )r r  instead of the whole cross-

section (32). Then 
 

 2 22
0 = 0.4 .sin cr a    (45) 

 

2 If 0Q   the spectrum collapses to a quadrupole 

doublet. 

In this case, the averaged cross-section is determined 

by the same general formula (33) but with the 

rotational broadening r  replaced by 
 

 
2 2 2= 0.4 = 0.3 ( / ) .r r c t c hD a a a     (46) 

 

If the magnetization relaxations are slow the 

average cross-section becomes 
 

6
20

2 2
=1

( ) = ,
4 ( ) / 4

W effa a
a j

j j eff

s e J
s s

−   
 

− +  
  (47) 

 

where =j js   defines position of the j th line and 

the averaged effective width is 
 

 = .eff N r   +  +    (48) 

 

In the regime of fast relaxations 
 

20

2 2
( ) = .

4 ( ) / 4

Wa ra
a

r

s e
s

−   +  
 

+  +  
     (49) 

 

If the contribution of rotation is neglected, Eq. (49) 

coincides with the result of Singwi and Sjolander 

[25]. 
 

 
Fig. 2. Dependence of the absorption cross-sections on the 

Doppler shift s, expressed in units / 2.  The cross-

section calculated by Eq. (43) is drawn by the solid line, 

the result of Singwi and Sjolander [25] by dashed one, the 

approximate expression (47) by dash-dotted.  
 

The role of rotational diffusion is illustrated in 

Fig. 2, where all the cross-sections are calculated in 

units 
2

0( / )
W

a
a e

−
    as a function of the dimen-

sionless parameter 2 /s   for the case, when 

0 0= = 5t  +    and = .c ha a  The exact cross-

section (43) is drawn by the solid line. The Singwi-

Sjolander’s curve, given by Eq. (49) with 

( ) = 0,r r  by the dashed one. For comparison, 

the approximate curve (49) is shown by the dash-

dotted line, calculated with the aid of Eq. (46). It is 
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seen that it surprisingly well approximates the exact 

result (43).  
 

5. Approach based on Langevin’s equation 
 

The correlation function (8) is not valid at small 

times. More correctly self-diffusion is described by 

the correlation function [25, 38] 
 

 
2

3/2( , ) = [2 ( )] exp ,
2 ( )

t

s t

t

R
G t t

t

−  
 − 

 
R  (50) 

where 

  
2

( ) = 1 exp( )t
t t t

t

D
t t t  − + −


 (51) 

with 

 = 6 / = .t

t

kT
a m

D m
    (52) 

 

The parameter 
1

t

−  means the characteristic (relaxa-

tion) time for the Brownian translational motion of 

the particle with mass m. 

At 
1>> tt −  the correlation functions (8) and (50) 

coincide. In the opposite limit as 
1<< tt −  the 

diffusion approach leads to a paradox, remarked in 

Ref. [32]. Then the mean-square displacement 
2 = 2 ,tx D t   and therefore the root-mean-square 

velocity along the axis x, given by 2 = 2 / ,x tv D t   

diverges as t  approaches zero. However, from the 

more correct correlation function (51), (52) it 

follows that at 
1<< tt −  the mean-square displace-

ment 
2 2= ,t tx D t    hence 2 = =x t tv D    

1/2( / ) .kT m=  Thus, the mean kinetic energy of the 

Brownian particle kinE  at 0t →  occurs to be deter-

mined by the same expression as kinE  for the mole-

cules of the ideal gas: 
 

 = 3 / 2.kinE kT  (53) 
 

The function (50) was derived by Chandrasekhar 

[38] from Langevin’s equation 
 

 
2

2
= ( ) / .t rand

d d
t m

dt dt
− +

R R
F  (54) 

 

Here on the right-hand side, the first term stands for 

the friction force over mass, ( )rand tF  for random 

forces acting on the Brownian particle. 

Let us find now the rotational correlation 

function, analogous to (50), starting from the well-

known relationship between the angular momentum 

L  of the rotating rigid body and the total torque K  

acting on it [39]: 

 = .
d

dt

L
K  (55) 

 

In the case considered the K  equals a sum of the 

friction torque [40] 
 

 3= 8 .fr ha− K ω  (56) 

 

and torques ( )rand tK  due to random forces. 

We take into account that the angular momentum 

for a rigid sphere of the radius a  is related to its 

angular frequency of rotation ω  by 
 

 = ,IL ω  (57) 
 

where the inertia moment of the rigid sphere 
 

 
2= 0.4 .hI ma  (58) 

 

Inserting (56), (57) into (55) one gets the 

equation, governing the stochastic rotational motion: 
 

 = ( ) / ,r rand

d
t I

dt
− +

ω
ω K  (59) 

 

where 
 

 
2

20 5
= = .

2

h
r

r h

a kT

m D ma


  (60) 

 

Keeping in mind that the components of the 

angular velocity ω  along the vectors 'ie  are defined 

as = /i id dt  we transform (59) to the equation 
 

 
2

2
= ( ) / ,i i

r rand

d d
K t I

dt dt

 
− +  (61) 

 

formally equivalent to Langevin’s equation (54) in a 

two-dimensional case. Here in the same approxi-

mation we ignore the boundary conditions for the 

angle i  and accept that it ranges from −  to .  

Further repeating derivation, done by Chandrasekhar 

[36], one gets the correlation function 
 

 
21

( , ) = exp ,
2 ( ) 2 ( )

r

s

r r

G t
t t

 
 − 

  
 (62) 

 

where the function ( )r t  is again defined by 

Eq. (51), but with index t replaced by r. As to the 

Fourier-transform, it is given now by 
 

 2 2 2
0( , ) = exp ( ) / 2 .sin

r

s rG t t r −   κ  (63) 

 

Combining these equations we get in the slow-

relaxation limit the cross-section as a superposition 

of six lines: 
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6

( )

=1

( ) = ( ),j

a a

j

s s   (64) 

 

each of them is given by 
 

2( ) 0( ) =
4

W b bj a a t r
a js e e J

− + 
   
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2
, =0 2 ,
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j
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s s

 − −

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− +  

 

  (65) 

 

where we introduced the parameters 
 

 
2 2 2 2

0sin
= , =t r

t r

t r

D D r
b b

  

 
 (66) 

 

and the widths 
 

 , = 2 2 .n k eff t rn k  +  +   (67) 

 

Again we replace averaging of the cross-section 

over the uniform distribution of Mössbauer nuclei 

inside the particle by averaging 
2 2

0sinr   i.e., this 

product is replaced by 
2 22

0 = 0.4 .sin cr a    Then one 

has a relation 
 

 ( ) = 0.045 ,r tb r b   (68) 

 

which allows to set in (65) 0.rb   

The integral width of the j-th Zeeman line is 

determined by the formula 
 

 
( )

( )

2
= ( ) .

( )

j

int aj

a j

s ds
s



−
 

   (69) 

 

Here 

 
2

0( ) = .
2

W
a

a as ds e
 −

−


    (70) 

Therefore 
 

 

1

=0

( 1) ( )
= ,

!

n n
b tt

int

n n

b
e

n

−


−  −
  

  
  (71) 

 

where the width = 2n eff tn    +   and the avera-

ge effective width are determined by Eq. (48). 

The significance of Langevin’s approach is 

illustrated in Fig. 3, where the Brownian broadening 

B   for magnetite MNPs with a diameter of 

700 nm is calculated by Eq. (46) (curve 1) and by 

Eq. (71) (curve 2). In the last case, we put = 0,rb  so 

that the translational Brownian motion is described 

by  Langevin’s  equation  and  the  rotational  one by 

 

 
Fig. 3. Brownian broadening of the absorption lines vs 

temperature for the magnetite nanoparticles with radius 

= = 350h ca a nm in the 60 % glycerol-water mixture, 

calculated in the diffusion approach (1) and Langevin’s 

one (2). 
 

simple diffusion equation. Note that in previous 

articles [23, 24] the Brownian rotation has not been 

taken into consideration at all. 
 

6. Discussion 
 

We have derived the expression (32) for the 

absorption cross-section ( )a s  of Mössbauer radia-

tion by a single nucleus 57Fe, whose position inside the 
MNP is determined by the radius vector r. All the 
relaxation mechanisms are taken into consideration – 
Néel’s relaxations of the particle magnetization as well 
as the Brownian translational and rotational motion, 
which ensure the broadenings of the Mössbauer lines 

,N t   and ( ),r r  respectively. Assuming the 

uniform distribution of the Mössbauer nuclei inside 
the MNP, we got rather cumbersome Eqs. (36) - (44) 

for the average cross-section ( ) .a s   The situation is 

significantly simplified by averaging only the r  

instead of ( ).a s  As is seen from Fig. 2, the cross-

section (47), calculated in this approximation, is very 
close to the exact cross-section (36). 

Dependence t  on temperature for large 

Brownian particles is well described by means of the 
correlation function, which is obtained from the 
stochastic Langevin equation [23, 24]. So far 
nothing like this has been done for the rotational 
Brownian motion. Therefore for Brownian rotation, 
we derived Eq. (61) similar to Langevin’s equation 
and suggested the corresponding correlation function 
(62). In the framework of Langevin’s approach to 
both translational and rotational motion, we obtained 
a general expression (65) for the cross-section. It 
occurred that the Langevin rotational corrections to 
the cross-section are much weaker than the trans-
lational ones. Therefore curve 2 in Fig. 3 is calcu-
lated by describing the translational motion by 
Langevin’s equation and the rotational one by the 
diffusion equation. 
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Fig. 4. Brownian broadening of the absorption lines vs 
temperature for the magnetite nanoparticles with 
diameters 40 nm and 140 nm dissolved in 96 % glycerol-
water mixture. The experiment [33] is presented by 
circles, our calculations by solid curves. (See color Figure 
on the journal website.) 

In Fig. 4 our calculations are compared with the 

experimental data of Cherepanov et al. [34]. From 

the Mössbauer spectra of ferrofluids, they subtracted 

the spectra of dried samples, which enabled them to 

extract the contribution only of the Brownian motion 

into the broadening of the spectral lines. The 

calculated dependence of the Brownian broadening 

t r +    on temperature is presented in Fig. 4 

by solid lines and the experimental data by circles. 

The calculations very well agree with the experiment 

for large particles having a diameter of 140 nm, 

while they terribly diverge for small MNPs with 

2 = 40ca  nm. The reason for such contradiction 

remained unclear. 
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РОЛЬ БРОУНІВСЬКОГО РУХУ ТА РЕЛАКСАЦІЙ НЕЄЛЯ 

У МЕССБАУЕРІВСЬКИХ СПЕКТРАХ МАГНІТНИХ РІДИН 
 

Розраховано переріз поглинання мессбауерівського випромінювання в магнітних рідинах з урахуванням як 

поступального, так і обертального броунівського рухів магнітних наночастинок, а також стохастичних інверсій 

їх намагніченості за відсутності зовнішнього магнітного поля. Роль броунівського руху у ферорідинах розгля-

дається в рамках теорії дифузії, а для магнітореологічних рідин з великими наночастинками – за допомогою 

підходу Ланжевена. Для стохастичного обертання ми вивели рівняння, аналогічне рівнянню Ланжевена, і 

знайшли відповідну кореляційну функцію. В обох випадках прості обертальні кореляційні функції отримано в 

наближенні малих обертів за час життя збуджених мессбауерівських ядер. Вплив релаксацій Неєля розгля-

дається в рамках моделі Блюма. 

Ключові слова: ефект Мессбауера, феромагнітні наночастинки, броунівський рух, релаксації Неєля. 
 

Надійшла / Received 23.05.2024 

https://doi.org/10.1007/BF02068700
https://doi.org/10.1021/acsami.8b16356
https://doi.org/10.1021/acsami.8b16356
https://doi.org/10.1134/S0021364018130064
https://doi.org/10.1016/j.jmmm.2018.11.044
https://doi.org/10.1016/j.jmmm.2018.11.044
https://doi.org/10.1134/S1063774520030074
https://doi.org/10.1103/PhysRev.165.446
https://doi.org/10.1002/andp.19063240208
https://doi.org/10.1103/RevModPhys.15.1
https://books.google.it/books?id=bE-9tUH2J2wC&pg=PR4&dq=L.D.+Landau,+E.M.+Lifshitz.+Mechanics.+3d+edition+(Oxford:+Elsevier+Ltd,+1976).&hl=uk&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjsztCcl9KIAxXY_7sIHQVWPdEQ6AF6BAgKEAI#v=onepage&q=L.D.%20Landau%2C%20E.M.%20Lifshitz.%20Mechanics.%203d%20edition%20(Oxford%3A%20Elsevier%20Ltd%2C%201976).&f=false
https://books.google.it/books?id=bE-9tUH2J2wC&pg=PR4&dq=L.D.+Landau,+E.M.+Lifshitz.+Mechanics.+3d+edition+(Oxford:+Elsevier+Ltd,+1976).&hl=uk&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjsztCcl9KIAxXY_7sIHQVWPdEQ6AF6BAgKEAI#v=onepage&q=L.D.%20Landau%2C%20E.M.%20Lifshitz.%20Mechanics.%203d%20edition%20(Oxford%3A%20Elsevier%20Ltd%2C%201976).&f=false
mailto:dzyublik@ukr.net

