
22 ISSN 2073-6231. ßäåðíà òà ðàä³àö³éíà áåçïåêà 4(76).2017

UDC 621.039.586:001.8

O. Kukhotskyi1, O. Dybach1, T. Iešmantas2

1 State Enterprise “State Scientific and Technical Center for 
Nuclear and Radiation Safety” (SSTC NRS), Kyiv, Ukraine

2 Lithuanian Energy Institute (LEI), Kaunas, Lithuania

Methodology for PSA 
Uncertainty Estimation and 
Application in Risk-Informed 
Decision-Making

Uncertainties are very important in risk analysis and should be consid-
ered in the decision-making process. This paper proposes the methodol-
ogy for estimation of PSA uncertainties in risk-informed decision-making. 
The methodology allows solving the complex task of identifying the sources 
of uncertainties, assessing their range, and providing an approach for con-
sideration of PSA results with uncertainties in combination with other fac-
tors underlying risk-informed decision-making. The levels of uncertainties 
are proposed to be classified using the variation factor. The authors applied 
the developed methodology to assess alternatives of post-Fukushima safe-
ty measures.

K e y w o r d s: uncertainty, risk-informed, decision-making, risk analy-
sis.
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Методологія оцінки та врахування невизначеності 
ймовірнісного аналізу безпеки в ризик-інформованому 
прийнятті рішення

Невизначеності є дуже важливими в імовірнісному аналізі безпеки 
(ІАБ) та мають бути враховані в процесі прийняття рішень. У статті за-
пропоновано методологію оцінки невизначеності ІАБ у процесі різик-
інформованого прийняття рішень і класифікацію рівня невизначеності 
введенням коефіцієнта варіації. Методологія дає змогу вирішити комп-
лексне завдання з виявлення джерел невизначеності, оцінки їх значен-
ня та врахування невизначеності результатів ІАБ у поєднанні з іншими 
чинниками, що лежать в основі прийняття рішення. Автори застосували 
розроблену методологію для оцінки альтернатив пост-фукусімських 
заходів.

К л ю ч о в і  с л о в а: невизначеність, ризик-інформований, прий-
няття рішення, аналіз ризику.
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N
owadays, risk assessment as a tool in support 
of decision-making is being increasingly used, 
particularly in such high-consequence technology 
as nuclear energy. Risk assessment deals with 
situations in uncertainty that is an inherent part 

of any modeling. The correspondence between a model and 
reality is always incomplete to some extent.

Although the concept for treatment of uncertainties in risk–
informed decision-making [1] has been discussed and examined 
quite extensively, it is still relevant today and needs to be 
adopted for practical applications. The outcomes of several 
projects (e.g. ASAMPSA_E [2]) initiated after the Fukushima-
Daiichi accident identified important sources of uncertainties 
in PSA (frequency of hazards, component fragility evaluation, 
etc.). The treatment of uncertainties has been recognized 
as an important problem for PSA with regard to decision-
making. Hence, uncertainties have to be systematically identified 
and classified, assessed by mathematical approaches, and 
propagated through the steps of the risk assessment procedure 
onto the risk measures until the decisions are made.

The main objective of this paper is to provide a view 
on the methodology of PSA uncertainty estimation with 
an emphasis on classification of uncertainty level and application 
in risk-informed decision-making. The methods for uncertainty 
assessment are presented in a concise manner to allocate more 
space for practical examples.

Types AND Sources of PSA Uncertainties

In the risk assessment context, it is useful to distinguish 
between “aleatory” and “epistemic” uncertainties [1].

We are talking about an aleatory uncertainty when the events 
or phenomena being modeled are characterized as occurring 
in a “random” or “stochastic” manner.

An epistemic (or state-of-knowledge) uncertainty is associated 
with the analyst’s confidence in the prediction of the PSA 
model itself. This type includes parameter uncertainties, model 
uncertainties, and completeness uncertainties. Parameter 
uncertainties relate to the uncertainty in the computation 
of input parameter values used to quantify the probabilities 
of basic events in PSA. Model uncertainties are often related 
to assumptions behind the model. Completeness uncertainties are 
due to the portion of risk that is not explicitly included in PSA.

We think this categorization is helpful in explanation 
of the problem and may improve the transparency of uncertainty 
analyses. The distinction of various types of uncertainties can 
be used in a decision-making situation in order to identify 
the most suitable measures to reduce uncertainties. Examples 
of different types and sources of uncertainties are presented 
in Table 1 based on the authors’ experience.

Methods for Estimation 
of different types of Uncertainties

The uncertainty analysis aims at determining the uncertainty 
in results that derives from uncertainty in inputs. Many 
methods have been developed for arriving at aleatory models 
such as reliability block diagram, fault tree analysis, event tree 
analysis, Markov models, failure modes and effects analysis, and 
stochastic simulation. There are several mathematical methods 
that may be find in the literature for propagating epistemic 
uncertainties such as: analytical methods (method of moments), 
discrete probability distributions, sampling methods, interval 
arithmetic, fuzzy sets, probability bounds and Dempster–Shafer 
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Theory (evidence theory). The methods differ from each other, 
in terms of characterizing the input parameter uncertainty and 
in kind of propagation from parameter level to model output 
level. Comprehensive overview of the methods is presented in [3]. 
Below we discuss the methods used for practical applications.

Parameter uncertainty. In PSA for a particular NPP, experts 
often have to resort to data outside their own power plant. This 
is because failures of many components are rare for a single 
power plant. Thus, relying solely on small-sample results leads 
to very high uncertainty levels in PSA risk measures, which 
makes the PSA results almost useless. On the other hand, since 
the designs and operating protocols are similar, it is feasible 
to look for data from other power plants and use them to reduce 
the uncertainty levels in PSA risk measures. A careful use 
of these different types of information sources would reduce 
the uncertainty levels in estimates.

Bayesian analysis is a natural framework to analyze different 
kinds of data. It is a relatively simple way to join different kinds 
of data and estimate the uncertainty levels for PSA model 
parameters. There are three main steps in Bayesian analysis: 
likelihood specification, prior distribution specification, and 
posterior calculation. The Bayesian analysis results in a posterior 
distribution for unknown model parameters and, therefore, 
provides a reliable level of uncertainty.

Several types of data are most often encountered: plant-
specific data — taken from historical records for a specific power 
plant and generic data — gathered from another power plant 
of the same design. If the plant-specific sample for a particular 
component is large, then one should not add other data from 
different power plants. If there are no data at all for some 
component or system, then PSA analysis must rely on generic 
data. If, however, the plant specific sample is small and there are 
generic data available, then these two sources can be combined 
to decrease the uncertainty level about unknown PSA model 
parameters. In our application, we have only one data point for 
a mobile diesel generator and a mobile pump. However, there 
is a considerable scope of information on reliability of diesel 
generators and pumps in general. Thus, to support the PSA 
analysis, we collected failure rate estimates from various data 
sources and combined them with plant-specific data. The so-
called empirical Bayes method [4, 5] can be used; however, 
it results in double use of data. We recommend (and did so 
in the calculation), looking at all of the collected estimates 
as a single data sample and performing full Bayesian analysis 
with non-informative prior distribution.

Model uncertainty. Sensitivity analysis techniques may be 
used to estimate the model uncertainty. Generally, sensitivity 
analyses are conducted by: (a) defining the model and its 
independent and dependent variables, (b) assigning probability 
density functions to each input parameter, (c) generating an input 
matrix through an appropriate random sampling method, (d) 
calculating an output vector, and (e) assessing the influences 
and relative importance of each input/output relationship. 
The literature contains details on the types of sensitivity analyses 
utilized for various modeling situations [6].

Completeness uncertainty. To estimate the completeness 
uncertainty, the analyst may add elements (‘black box’) 
of assumed limitation to the PSA model [3, 7]. It is the simplest 
way to connect inputs to output through the calculation code. 
It treats the system as a ‘black box’ so it does not explicitly 
use knowledge of the internal structure. We may be uncertain 
about the value or state of various inputs. These inputs include 
parameters of the new elements that form the boundary 
of the possible range of values. The value or status of output(s) 
would then be uncertain due to input uncertainties, as well 
as other sources of uncertainties besides the known inputs.

CONSIDERATION OF UNCERTAINTIES 
IN RISK-INFORMED DECISION-MAKING

Classification of uncertainty level. We propose to use 
the concept of variation factor for classification of uncertainty 
levels. This term was first used by K. Pearson in 1985 [8] 
as a dimensionless measure of dispersion of a random 
distribution. The variation factor for the purposes of uncertainty 
level classification is defined as follows:

 VK
σ

=
µ , (1)

where σ2 is variance and µ is mathematical expectation of a random 
variable (in general, µ can be either positive or negative).

Having investigated the dispersion characteristics 
of a random variable, the authors developed the classification 
(scale) of uncertainty levels based on variation factor values 
(Table 2). Using this scale, one can set levels of uncertainties 
for both probabilistic and deterministic assessment.

Variation factor KV and, consequently, the level of uncertainty 
for probabilistic assessment should be defined based on the values 
of σ2 and µ calculated using the PSA model.

Table 1. Examples of different types and sources of uncertainties

Types and Sources of PSA uncertainties

Aleatory
Epistemic

Parameter uncertainty Model uncertainty Completeness uncertainty

Random behavior
Values of parameters
(fixed but poorly known)

Assumptions Limitations

Example: 
probability that 
a safety/relief 
valve sticks open 
after n-demands 

lack of plant-specific data imperfect knowledge on physical phenomena limitation of PSA models

deficiency of methods 
and/or data on hazard frequency

simplifications for constructing 
a manageable logic model  of the plant

lack of resources

imprecisely defined human errors 
and common cause failures

different models 
may be used for same processes

lack of knowledge
(unknown unknowns)
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For deterministic assessment, assuming uncertainty level 
for the final result and knowing its point value, it is possible 
to calculate the variance and to reconstruct a function 
of resultant distribution.

Such a transition from an expert judgement to a numeric 
characteristic of a random variable makes it possible to check 
compliance with specified criteria taking into account 
uncertainties in their values.

General procedure for making decisions on a set of acceptance 
criteria considering uncertainties. The classical integrated 
risk-informed decision-making (RIDM) process [1, 9] was 
supplemented by the uncertainty considerations and presented 
in Fig. 1.

The uncertainty arises in two steps of RIDM:
verifying the compliance of each alternative with 

an acceptance criterion;
selection of the optimal/best decision.
Comments on the RIDM process:
- the manner in which the mandatory requirements and 

the deterministic, probabilistic and other insights are weighted 
depends on the particular issue being addressed. In most cases 
the deterministic and probabilistic insights are in agreement 
(e.g. modification that improves the defense-in-depth will also 
lead to reduction in the risk). In other cases, greater weight 
is to be given to more conservative (deterministic) insights. 

The relative weights given to deterministic and probabilistic 
insights reflect the regulatory body’s confidence in PSA;

- as can be seen from Fig. 1 (1), when passing from point 

estimate of decision ( )0 0
1 2,A f f  to the interval estimate ( { }nA  — 

is a set of alternative decisions), its uncertainty area can 
exceed acceptance criteria, which shall be taken into account 
in making a decision. In this case, the following condition shall 
be fulfilled for each assessment of the decision (probabilistic 
and deterministic) 0 min max3 , , 1,l l l lf f f l L ± ⋅ σ ∈ =   set 

of acceptance criteria. In the process of such check, some 
of the alternative decisions are rejected, and as a result we have 

a truncated set of alternatives { } 1, 1,A n N= ;

- the best decision from available alternatives is selected 
using the main three factors: validations of the decision 
compliance with the acceptance criteria (including ‘3σ’), results 
of the assessment by weighing factors and uncertainty class (KV).

Practical Application 
for Post-Fukushima safety measure

In response to the 2011 Fukushima nuclear accident, 
safety re-assessments (‘stress tests’) were carried out at 
all EU nuclear power plants (Ukraine also joined the EU 
initiative on a voluntary basis). Different safety measures 
were on the table for consideration to ensure that the main 
safety functions would be performed in various hazards for 
VVER units. To validate the proposed methodology, we 
analyzed two options for long-term decay heat removal from 
the core: 1) feed the steam generator and restore service water 
supply from a mobile diesel-driven pump (MDP) accompanied 
with a 0.4 kV ‘small’ mobile diesel generator (MDG); 2) restore 
emergency power supply of one safety train with 6.3 kV ‘big’ 
mobile diesel generator.

The PSA model for generic VVER-1000 (SAPHIRE) 
developed by SSTC NRS was used for modelling [10]. 
The PSA model includes 14 event trees (ET), 168 fault trees 
(FT), and 581 basic events (BE). We modified the PSA model 
to estimate impact of both measures on the core damage 
frequency.

Table 2. Classification of uncertainty levels

Class of uncertainty Variation factor
Level 

of uncertainties

Deterministic value KV = 0 Zero

Random variable 
with finite variance

0 < KV ≤ 20 % Low

20 %< KV ≤ 50 % Average

KV > 50 % High

Random variable 
with infinite variance KV → ∞ Extremely high

Fig. 1. 
RIDM process 
supplemented 
by uncertainty 
considerations
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Parameter uncertainty (Bayesian assessment of reliability 
data). Bayesian inference was used for estimation of the failure 
rate of mobile equipment. We have collected specific and generic 
data from various sources such as technical specifications for 
mobile equipment and available reliability databases for similar 
equipment. The generic data were failure rate mean or mode with 
either 0.05 and 0.95 quantiles, or error factor. The distribution 
in all cases was lognormal. Thus, for every data entry we can 
calculate lognormal distribution parameters µ and σ. Whenever 
the quantiles were present, lognormal distribution parameters 
were calculated by the following equations:

 

( ) ( )
( )
( )

( ) ( )

-1
1

-1 -1 -1
∙

-1 -1
1 1

F1
∙

- F

∙

p

∙

p p

 
σ =  

Φ Φ  

µ = σ ⋅ Φ
 (2)

where Ô-1(p) is a p-quintile of standard normal distribution, 
p1 = 0.05 and p2 = 0.95; F-1(p) are p-quintile of lognormal 
distribution.

In this way, we converted each entry of initial data 
to the parameters of lognormal distribution, i.e. two samples 

of parameters µ and σ were obtained. Each set was treated 
as realizations of Gaussian random variables (first taking 
logarithms of sigma parameter) and Bayesian estimation 
procedure were carried out. Because only failure rate 
expectations were given for MDG and MDP, these specific 
entries could only be used to estimate µ parameter, but not σ. 
Posterior point estimates of mean and standard deviations for 
failure rates of the mobile diesel generator and mobile pump are 
provided in Table 3. Posterior predictive distributions for failure 
rates of the mobile diesel generator are presented in Fig. 2.

Model uncertainty (Human Reliability Analysis (HRA)). 
Current HRA methodologies that are commonly used 
in the nuclear power industry are not designed to accommodate 
the evaluation of some tasks associated with the use of portable 
equipment, such as retrieving equipment, and temporary power 
and pipe connections. These assumptions are a huge source 
of model uncertainty.

The method for estimating the component of the human 
error probability (HEP) associated with the deployment 
of portable equipment [11] was used to consider the model 
uncertainty. This method is intended for application to a variety 
of hazard risk assessments [12]. The method is a simplified 
process that applies adjustment factors to represent the impact 
of performance factors (PFs) on a hazard-specific basis 
on a base HEP. The impacts of each PF are tracked in an HRA 
decision tree and the combined impact of all decision branches, 
which characterize the implementation conditions for the site 
being evaluated and determine the scenario-specific HEP. We 
have developed an HRA decision tree for an external hazard 
(earthquake). The decision tree presented in Fig. 3 addresses 
the conditions that were anticipated to be the most relevant 

Fig. 2. Posterior predictive distribution for failure rate:
1 — failed to run mode; 2 — failed to start

Table 3. Posterior point estimates of mean and 
standard deviations for failure rates

E
qu

ip
m

en
t Initial data 

for estimation
(number of entries)

Bayesian point estimates

Failed to run, 1/hr Failed to start, 1/hr

Failed 
to run

Failed 
to start

λ σ λ σ

MDG 9 12 7.37E-4 6.7E-4 5.76E-4 3.7E-4

MDP 1 5 3.3E-4 1.1E-3 1.2E-4 2.0E-4

Fig. 3. Human Reliability 
Analysis decision tree
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to mobile equipment deployment in external hazard conditions. 
Available time window within which the action must be 
performed to achieve the function provided by the mobile 
equipment was considered. For example, this time was measured 
from the instant the hazard impacts the plant to the instant at 
which the MDP must be delivering water to its loads.

Completeness uncertainty (limitation of the PSA model). 
Tabular functions were used to set the input parameters for new 
basic events (‘black box’) added to the fault trees presenting 
the equipment performing safety functions in case of hazards. 

The added basic events cover the existing modelling limitations 
for passive elements in PSA (e.g. pipe connections for MDP, 
feeding line, flexible hoses) that also may be affected by 
the hazards. Existing fragility curves were considered to estimate 
the parameters.

Results of calculations and decision- making. The modified 
PSA models were run repeatedly with different assumptions. 
As a result of calculations, the value of point estimation, mean 
and standard deviation, and probability density function (PDF) 
were obtained. PDF for each calculation of both alternatives 
shown in Fig. 4.

Then the results were processed and aggregate functions 
were obtained with the mean and standard deviation for both 
options (Fig. 5).

As shown in Fig. 5, the mean values for both alternatives 
satisfy the safety criteria (CDF) 1.0E-04 1/year for existing 
NPPs, including ‘margin’ of 3σ [13, 14]. CDF for alternative 
1) less than for alternative. 2) Moreover, the estimated Kv for 
both alternatives show average level of uncertainty for alternative 
1) and high for alternative 2) according to the proposed scale. 
High-level uncertainty of alternative 2) is caused by huge 
sources of uncertainties: estimation of HEP, difficulties with 
transportation and deployment of ‘large’ MDG, reliability 
of one safety train after hazards etc. Therefore, on the basis 
of our calculations, we proposed option 1) as the best decision.

Conclusions

In this paper, we have presented our view on the methodology 
for estimation of PSA uncertainties and practical treatment 
of uncertainties in risk-informed decision-making. Our starting 
point is that PSA should provide evidence behind the results 
obtained. This is important because the role of risk assessment 
in making decisions is increasing, so the uncertainties of analyses 
should be clearly understood and properly considered.

We emphasize the need of an extensive qualitative analysis 
for all types of uncertainties that are recognized. There are 
different mathematical methods for estimation and propagation 
of aleatory and epistemic uncertainties. Having examined 
the dispersion characteristics of a random variable, we developed 
the classification (scale) of uncertainty levels based on variation 
factor values, which can be used both for probabilistic and 
deterministic assessment.

The classical integrated RIDM process was supplemented 
by uncertainty considerations. We assume that uncertainty 
arises during RIDM when compliance of each alternative 
is verified against an acceptance criterion and selection 
the best decision among alternatives. The proposed approach 
was applied to analyze alternatives of post-Fukushima safety 
measures to ensure the heat removal from the core in the events 
of hazards.

We believe that research in this area should be continued 
to ensure confidence in the PSA results and to provide a solid 
ground for risk-informed decision-making.
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