Развитие метода прогнозного графа в усло¬виях неполноты и неточности экспертных оценок / Самохвалов Ю. Я. (2018)
Ukrainian

English  Cybernetics and Systems Analysis   /     Issue (2018, 54 (1))

Samokhvalov Y.Y.
Development of the prognosis graph method under incomplete and inaccurate experts assesments

The author considers the mechanisms to process fuzzy experts’ estimates in forecasting the time and possible solutions of scientific problems. The distribution function of the runtime probability is proposed. This function allows constructing the continuous, integral distribution of a random variable on its total domain, based on the aggregate of discrete interval beta distributions. As the consistency measure of the fuzzy estimates, the coefficient of variation of the left- and right-hand boundaries of the time interval is used. Application of the Monte Carlo method to find the expected expenses for the problem solution is described. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: beta distribution, expertise, experts’ estimates, fuzzy estimates, goal attainment time, Monte Carlo method, prediction, prediction graph, Distribution functions, Forecasting, Probability distributions, Beta distributions, expertise, fuzzy estimates, Goal attainment, Prediction graph, Monte Carlo methods


Cite:
Samokhvalov Y.Y. (2018). Development of the prognosis graph method under incomplete and inaccurate experts assesments. Cybernetics and Systems Analysis, 54 (1), 84-92. doi: https://doi.org/10.1007/s10559-018-0008-1 http://jnas.nbuv.gov.ua/article/UJRN-0000805859 [In Russian].


 

Інститут інформаційних технологій НБУВ


+38 (044) 525-36-24
Голосіївський просп., 3, к. 209
м. Київ, 03039, Україна