Подход к классификации состояния сети на основе статистических параметров для обнаружения аномалий в информационной структуре вычислительной системы / Рубан И. В., Мартовицкий В. А., Лукова-Чуйко Н. В. (2018)
Ukrainian

English  Cybernetics and Systems Analysis   /     Issue (2018, 54 (2))

Ruban I., Martovytskyi V., Lukova-Chuiko N.
Approach to classification of network condition on the basis of statistical parameters for detection of anomalies in the information structure of the computing system

An approach to the classification of the state of a network based on of statistical parameters is investigated. Deficiencies of methods for classifying the state of a network are established and the basic implementation of a committee of classifier is considered. A modification of the committee of classifiers using a neural network as a metaclassifier is proposed. Experiments on classifying the state of a network were carried out. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: classification, computing system, machine learning, meta-learning, stacking, Learning systems, Computing system, Information structures, Meta-classifiers, Metalearning, Network-based, stacking, Statistical parameters, Classification (of information)


Cite:
Ruban I., Martovytskyi V., Lukova-Chuiko N. (2018). Approach to classification of network condition on the basis of statistical parameters for detection of anomalies in the information structure of the computing system. Cybernetics and Systems Analysis, 54 (2), 142-150. doi: https://doi.org/10.1007/s10559-018-0032-1 http://jnas.nbuv.gov.ua/article/UJRN-0000846647 [In Russian].


 

Інститут інформаційних технологій НБУВ


+38 (044) 525-36-24
Голосіївський просп., 3, к. 209
м. Київ, 03039, Україна