Інтегральний оператор Рімана для стаціонарних та нестаціонарних процесів / Александрович І. М., Ляшко С. І., Сидоров М. В.-С., Ляшко Н. І., Бондар О. С. (2021)
Ukrainian

English  Cybernetics and Systems Analysis   /     Issue (2021, 57 (6))

Alexandrovich I.M., Lyashko S.I., Sydorov M.V.-S., Lyashko N.I., Bondar O.S.
Riemann integral operator for stationary and non-stationary processes

Integral operators based on the Riemann function, which transform arbitrary analyticalfunctions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order,are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtzequation. A method for finding solutions to the above equations in analytical form is developed. In somecases, formulas for inverting integral representations of solutions are constructed. The conditions forsolving the Cauchy problem for the axisymmetric Helmholtz equation are formulated. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: analytical functions, integral operator, regular solutions, Hyperbolic functions, Integral equations, Analytical functions, Hyperbolic type, Integral operators, Nonstationary process, Parabolics, Regular solution, Riemann functions, Riemann integral, Second orders, Solutions of equation, Mathematical operators


Cite:
Alexandrovich I.M., Lyashko S.I., Sydorov M.V.-S., Lyashko N.I., Bondar O.S. (2021). Riemann integral operator for stationary and non-stationary processes. Cybernetics and Systems Analysis, 57 (6), 84–93. doi: https://doi.org/10.1007/s10559-021-00418-x http://jnas.nbuv.gov.ua/article/UJRN-0001284191 [In Ukrainian].


 

Інститут інформаційних технологій НБУВ


+38 (044) 525-36-24
Голосіївський просп., 3, к. 209
м. Київ, 03039, Україна