О трехмерных интегральных математических моделях динамики толстых упругих плит / Стоян В. А. (2018)
Ukrainian

English  Cybernetics and Systems Analysis   /     Issue (2018, 54 (2))

Stoyan V.A.
Three-dimensional integral mathematical models of the dynamics of thick elastic plates

The complex of problems related to constructing three-dimensional field of elastic dynamic displacements of flat elastic plate with arbitrary boundary-edge surface is solved. It is assumed that boundary condition of the plate is given in terms of powerful perturbation factors or displacement vector function. Problems solutions are based on classical Lame equations of spatial theory of elasticity under root-mean-square consistency of the solution with corresponding external-dynamic observations of the plate. The accuracy of such consistency is estimated. The uniqueness conditions for the solution of the considered problems are formulated. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: pseudoinversion, spatial problems of elasticity theory, spatially distributed dynamic systems, thick elastic plates, Computer science, Cybernetics, Arbitrary boundary, Displacement vectors, Dynamic displacements, Elastic plate, Elasticity theory, Pseudo-inversion, Spatially distributed dynamic system, Theory of elasticity, Elasticity


Cite:
Stoyan V.A. (2018). Three-dimensional integral mathematical models of the dynamics of thick elastic plates. Cybernetics and Systems Analysis, 54 (2), 68-77. doi: https://doi.org/10.1007/s10559-018-0024-1 http://jnas.nbuv.gov.ua/article/UJRN-0000846639 [In Russian].


 

Інститут інформаційних технологій НБУВ


+38 (044) 525-36-24
Голосіївський просп., 3, к. 209
м. Київ, 03039, Україна